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ABSTRACT

prorAroosstem based on temporal logic is presented for proving properties of conctirrent

progamsbase onthe shard-variables compul-tion moodeli. 'Ihe systemr consists of Lii ree parts:
the general uninterpreted patrt, Lte domnain dependlent part and the( program dependent part. lit the
geoceral p)art we give a complete proof systerfor first-order temporal logic with dletailedl Iroors of
11seful I hcorems. TFhis logic enlables reasoning abou t general timne sequences. The dorn~u n iejloeo t
part characterizes the special properties of' the (1omain over which the( program operates. The
program depenident part introdJuces programT axiomis whichi restrict the time sequlences con~sidered

to he execu tioni sequences of a given program.

The utility of, the rff systeni is (leTfIOll irated by provinug in variance, livns anid p red once
pro perties of several ~( cnurrent programns. IDerived proof' priniicipl~les for iese classes of' p roper tl(-s,

acobtajii ed and lead lo a comnipact rep r~sn~tation oproors.
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A. INTRODUCTION

In this work we present a proof system based on temporal logic for proving the properties or
concurrent programs. We refer the reader to [MP I] for a more detailed discussion of the conip|-
tational model of concurrent programs, and the advantages offered by the language or temporal
logic in formulating properties of concurrent programs.

1. THE TEMPORAL LANGUAGE: SYNTAX AND SEMANTICS

We first describe the temporal language we are going to use. This language contains special
constrets that are suitable ror reasoning about programs.

The language uses a set of basic symbols consisting of individual variables and constants,

" propositions, and runction and predicate symbols. The set is partitioned into two subsets: global
and local symbols. Intuitively speaking, the global symbols denote entities that (1o not change
durig a program execution. The local symbols, on the other hand, may change their rreanings
and values in different states throughout the execution. For our purpose, the only local symbols
that interest us are local individual variables and propositions. We will have global symbols or all

- ,types.

We use the usual set of boolean connectives: A, V, D, _ and - together with the equality
predicatde = and the first-order quantifiers V and ]. These operators are referred to as the classical
operators. Tile quantifiers V and _: are applied only to global individual variables.

The modal operators used are: 0"1, 0, 0, and U, which are called respectively the always,
sometime, next and until operators. The first three operators are unary while the U operator is
binary. We use the next operator, 0, in two different ways - as a temporal operator applied to
formulas aind as a temporal operator applied to ternus.

A model (1, a, a) for our language consists of a (global) interpretation I, a (global) assignment

a and a sequence of states o.

0 The interpretation I specifies a noncmpty domain D and assigns concrete ele-

merints, frunctions and predicates to the (global) individual constants, function
and predicate symbols.

The assignment ce assigns a value over tiic appropriate domnain to each of the
global individual variables.

0 The sequence a = so, 3t, • is an infinite sequence of states. Each state si
assigns values to the local individual variables and propositions.

2
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lFor a se(ueIIce

a 80,81, ...

we denote by

a(i) Si Si + ,

the i-truncated suffix or a.

Given a temporal formula w, we present below an inductive definition or the truth value of W
in a model (I, a, a). The value or a subrormula or term T under (I, k, a) is denoted by rl, with
I being implicitly understood.

Consider first the evaluation of terms:

0 For a local individual variable or local proposition y:

o= [y],

i.e., the value assigned to y in So, the first state or a.

0 For a global individual variable u:

u1 a[u],

i.e., the value assigned to u by a.

* For an individual constant the evaluation is given by I:

For a k-ary function f:

f(tsf. .. == e[fl(te In t. i o), )

i.e., tile value is given by the application of the interpreted function I[f] to the
values Of tl, .,tk ewdateaLd if) tile Model(lt,.

* For a term t:

(Ot01 a= tI(l) I

i.e., the value of o t in a = so, si,... is given by the value of t in the I-
truncated suffix a ( ) = S1,82, ....

Consider now the evaluation of formulas:

lFor a k-ary predicate p (includinug equality):
p(th, . ,tk)j 11tPl(til , . tkl').

Ilere again, we first evaluate the arguments in the model and then test J1p] on
them.

F.'or a disjunction:

(WnI V W2)1 - true if and only if w I I true or w21 = true.

And similarly roi- thie other binary boolhan ronnectives V, D , and
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" For a negation:

("-w)l = true if and only if wl false.i-r
. For a next-tinme application: .

(0l W) W

Thus 0 w means: w will be true in the next instant read "next w".

For an all-times application:

(-'w)l true if and only if 'or every k > 0, m,7v =true,

i.e., w is true (or all sullix sequences or a. Thus 0 w moans: ?) is true r'or all
r'uture instants (including the present) read "always w" or "hencetorth w".

* For a some-time application:

(0w) true if and only if there exists a k > 0
such that wivl(k) true,

i.e., w is true on at least one suffix of o. Thus 0 w means: w will be true for
some ruture instant (possibly the present) read "sometime w" or "eventually

w).

For an until application:

wIUw 2 1' = true if and only if f'or some k > 0, w2  true and
(or all i, 0< i < k, "Itv(,) = true.

Thus wV1 UIw2 means: there is a future instant in which w., holds, an(l such that
until that instant w, continuously holds read "w, until U)2 " ([KAM], [ClISS}).

- For a universal quantification:

(Vu.w)1 = true if and only if r'or every d c D, ?I °' true,

where cv' a o [u 4- di is the assignment obtained rrom (V by assigning d to u.

* [or an existential quantification:

(]u.w)j ' = true if and only if ('or some d E 1), wl o = true,

where a' = a o [u -- dj.

Following are some examples o' temporal expressions anl their intuitive interpretations:

u _-0 v I( u is presently true, v will eventually become true.

0(u D 0 v) Whenever u becomes true it will eventually be ('ollowed by o.

0 0 IV At some fuiture instant w will become permanently true.

0(7v A 0 .- w) There will be a ('uture instant iuh that w is true at that instant
and f'alse at the next.

E"J w Every r,|itire instant is rollow,d by a later one in which w is true,
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thus u; is true ininiitely often.

0 (u D 0 v) If u ever becomnes true, theni v is true at that instant and cvcr after.

0 u V (UUv) P,'ither It holds continuously or it holds until anl occurrence of v.
T[his is the weak Formi of the until operator that, states that u will hold
continuouisly until the first occurrence of' v it' v ever happens
or indefinitely otherwise. A

01
* v (('-'v)Uu) If v ever happens, its first occurrence is preceded by (or coincides with) u.

*I IV is truie undier the model (1, a, a), we say that (F, a, or) satisfies w or tha-t (I, a, a) is a
(satisfying) model for w. We dlenote this by

!a, a) 1=W.

A rormnula IV is satisfiable if there exists a satisfying mnodel for it.

* A Formula w is valid if' it is true in every model; in this case we write

Somnetimnes we are interested1 in a restricted1 class of models C. A Formula w which is true for
* every model in C is said to be C-valid, denoted by

Example:

T[le Formula O(wl A W2 ) D (O wl A 0 w,2 ) is valid, i.e.,

I-- O(wi A W2) D (Owl A OIu2).

it. says that if there exists an instant. in which both wl andl W2 are true then there exists an instant
in which wl is true and there exists an instant in whi( hi w2 is truc.

Reversi ng the i nifpliC.at0i ondoes not, yield a valid Formunla, i.e.,

S(O'wl A 071)2) :D O(w1 A 7V2 ).

l~or, consider an interpretation consisting of a sequence of states:

a: 80,8.1,..
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such that wl is truev on all odd riuinhretl stkat and lalse elsewhere, and iv., is triue on all the even
numbtered states and rlalse on the odd( ones. Theni certainly b~oth 0 up, and ;i2 re I rule on (7,
hevnev 0,iv A 0 IV2 is true. Onl the other hand, there is no state on which bo1)th w, and trn2 are
truje simultaneously. H ence O(w1 A U12) is fas.ConlsequenVtly the imlplication is rlke uinder the
interpretation u.j

2. THE PROOF SYSTEM

H avinrg defined valid formii Ins, we naturally look for a Ie etivye systern in w hichI validity cani
* . be proved. Ili such Ii systemi we take somie of' the valid forinulas as axioms ;ill(] p~rovidle a set of'

'011nd inference rules by which we hopc to he able to pirove the other valid lorintiilas as theoremns.
A forniula w is a theorem of the system ei ther ir it is anl axiomi of tile systmn or has a proof in
which it is derived rromn the axionis using the inference rules or the system. We (denote the fact
that w is a theoremi is provable within the systemi by F w

* ~Our interest in the temnporal logic fornialisin is mai nly miotivated by tlie appIlicabili ty of this
logic t~o proving properties of' concurrent programs. Therefore, aplart fromn developlinrg the general
basic logical p roperties of the operators and their i nterrcl ations, we will mnostly be interested iii

pro perties that are valid over comnip~utat~ions of a givyen concuirren t p rogrami P . Tl'hi s, the i011otior o
validity our system will try to captuire is that of' a formuila being true for all possible comipuiitations
or the given prograin, and riot, necessarily over ain arbitrary mnodiel. This co rrespondls to t1 he conicep~t
of' A(P/)-validity where A(P1) is the class of' all miodlels corresponding to compu tatiorns of' 1'.

We stricetiire ouir proof system i ito three rnai n layers dependen t on thie uiiiiversal valiity of
thie thetoremns that, can be (lerived iii each layer. Ili the first layer, cal 1led the general part, we deal
with hili general evniporal properties of (discre te li near seqIunces (arbitrary models). Th'leorems
liroveul inr that part are valid for all sequenrces over arblitrary dlomai ns. They tii iversally hold for
arbitrary computations of' all progranis over suich domainis, as well as for sequences which cannot
ven be dleri ved as (lie cornpu tation s of a programi. Ini the next layer the domain part, we restrict
uir Atori ion to a particti lar (loinain 1) ando provide tools for proving validity over 100(1(15 all of
whiich Iire intIe rpretedl over 1). The thi rd , most restrictive layer is the program part. IHere we
restrict our attention to a particular programi P and develop tools for proving validity only o~ver
1(f~els whose sequiences are legal compiIutations of iP.

Ini a forthcoming p)aper, the programn dependent part is proved to be comiplete relative to the
general ternipo ral theory over the dat~a olnai ri. We also show that its depenciieie onl the p~articuilar

cominp utation 1110(1ell studied is modu1Iilar, by presen tinrg a sitmilIar systein for p rovinrg propierties (of

(SP programiis.
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B. GENERAL PART

* \A~~~e st:' rt the genieral part b~y (lest ribhr u first the axiomatic systerui for [)ropo;i tio ii a temnpo ral

logic i which we do iiot, admit predticates or i(iaitification.

3. THlE PROPOSITIONAL TEMPORAL SYSTEM (0, , 0 AND U)

'1'e proof system for the proposit ion ia part, coiisists or the lollowiig axioms:

AXIOMS:

A2. l'- 0(V11 W 2 ) D([11  D Ow2 )

A3. F- Ow w t

A5. I- O(W1 IV2o) (OWI D 7w2 )

A6. f- Ow D 0Ow

A7. I- Ow D 00Ow

AS. F- 0(wv D 07) D (w D w)

M A. I- (IVIUtW 2 ) [E [V 2 V (vil A O(wr IUW2))]

A10. l'- (to, UwI2) O?2

Axiomu A I defines 0 as the dural of 0; it states that at all timries wo is false if and only if it, is
riot the case that somietimfles Uw holds. Axio mu A2 states that if ii versal ly wo1 i in plies U2 tirerr if
at alt times w,1 is true then So is toV2. AXionri AM estaltishes the presenit as part of1 thre frture lby
statinig that if u; is true ;it,i lruture iistaits it murrst be tre at thIe prresent. Axiom A4 establishies

0 a slf-duna1. (Ioliseiretty it, impillies that tihe nevxt. i rstamit, exists arid is iretue, ntreritor
miodels to linear sequenices (rio h ran i i rug). A xiom A5 is tihe anal ogie of A 2 for the 0 operator.
A xioim A 6 states thrat, tihe next i ristair t is onie of tir utu re states. Axiorir A7 states that if w19

holds 'mi alt future istmirts it, also hrolds iiall 11irrstarrt's whlich tie iii tire ritrire o1h the TreXt irstarr.
* Axiorn AS is tire "corurpritational iniduction'' "xiornr; it, states that, it a property is inhleritedl over
* ~onec step trarisi tbirs, it, is inrvarianrt over aiy sir flix seq(li nite whrose first, state satisfies wo. Axioi M

chiaracterizes thle unti~l operator b~y (Jisiriirlg its ('ect iiitA) what is implied for tire present, arid
whrat is imprlied for tire inr'xt. irrstart. A xiomn At 10 simirply states tha1"t "."? r ur rtil 112'" iririrlieS thrlt It.

- wilt eveitiimry happenl.
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INFERENCE RULES:

RI. Propositional Tautology PT

If u is an instance or a propositional tautology thcn F- u

R2. Modus Ponens -- MP'

If F-u Dv and F u then F v

R3. 0 Insertion -- 01

If I- u then F 0Ot

All these rudes are sound. The soundness of' R[ and IN2 is obvious. Note that in RI we also
include tenmporal instances of' tautologies; we may substitute an arbitrary temporal formula for a
proposition Ilter in obtaining an instance. IFor example, the formula Ow D Ow is a temporal
instance of the tautology p D p. To justify R13, we recall that validity ofiw means that w is true in
all mnodels, hence 0Ow is also valid.

DERIVED RULES AND THEOREMS:

Before giving some theorems that can be proved in this system, we develop several useful
dlerived rules:

Propositional Reasoning -41 P

F (u 1 AU 2 A ... A i,) Dv

I-u 1h F- U2 , .. ,and I-u,,

I- V

The notation above is used to describe inference rules. It has the general form

l-(I, V , W

and means that if we have already proved pi, Y. VPM (the assumptions or premises of the rule),
we are allowed by this rule to infer -0 (the conclusion or consequent of the rule).

Proof-

The rule PR follows from the propositional tautology (Rule RI)

F- f(ul A U2 A ... A u,) Dv] D juj D(112 D .. i DV .

by applying Ml' (Rule R12) n + I times.

8



Whenever we apply this derived rule without explicitly indicating the premise

I-(ul A U2, A ... A u,) D3 v,

it means that the premise is an instance of a propositional tautology.

0 Insertion - 01

Proof:

1. I- u given

2. F- Du by 01

3. I- Ou by A6 and MP J

The first theorem that we derive in the system is:

T1. -w :D0w

Proof:

1. l-(0 -w) -w by A3

2. I-w D ( 0,-w) by PR

3. -wD 0w by Al and PRJ

The theorem implies (by MP) the derived rule

0 Insertion Of
I-u

4F 9

*" T2. - Ow DOw

Proof:

(. I-(O-,w) D (O - w) by A6



2. ( o-W) D ("-OW) by P'R

3. - Ow D Ow by Al, A4, and I1R

The following three rules (and a similar rule for tihe until operator presented later) show that
all the temporal operators are monotonic in the sense that an argument may be replaced by a
weaker statement yielding a weaker expression.

0] 0 Rules

F u D V F-u - V
(a) (b)

F- Ou D 0-Iv F-I-u - [v

Proof of (a):

1. -u D v given

2. 1- O(u D v) by 01

3. -O(u D v) D(O u 0 Dv) by A2

4. -u D Ov by 2,3 and MP

Rule (b) then rollows by propositional reasoning by using the tautology

[Cu D: ,o) A (v u )l -- (u v). =1

0 0 Rules

F-u v Fu =v
(a) (b)

.?.. F Ou D Ov I- OU-_ OV

Proof of (a):

u1. uDv given

2. -, v D -u by PR

3. F 0 - v D 0 -,'u by 00

4. F -, v D -u by Al and PiR

5. F Ou D Ov by PR

Rile (b) then follows by propositional reasoning. j

10



0 0 Rules

I-u v -u v(a) (b)
( -FOu D:Ov I-Ou Ov

Proof of (a):

1. F u V given

2. - O(u D v) by O

3. F Ou D Ov by AS and MI'

Rule (b) t'ollows by propositional reasoning. j

Computational Induction Rule C1

Fu Ou

1-u D fu

Proof:

1. F-u Ou given

2. I- D(u D Ou) by 01

3. F fl(u D O u) D (u D flu) by A8

4. F-uD lu by 2,3 arid MP'
-I

Derived Computational Induction Rule - DC1

I-u D (vA Ou)

F u D[v

Proof:

1. F u D (v A O u) given .

2. F u D Ou by IR

3. I- uD0u by , I

4. F u D v by I and I'r

5. F u D -v by 00

I1
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6. F u Ov by 3, 5and PIt

The following two theorems show that the 0 and 0 operators are both idernpotent:

T3. - Ow 0 0 w

Proof:

1. F- 0 w Ow by A3

2. F Ow DO w byA7

3. - Ow D DOw by Cf

4. -wE 00w by 1,3and lRi

T4. F 0 w- 0 w

Proof:

1. -,Ow n-w by At

2. F--w -00-w by T3

3. F-0Ow = [00-w by I and 0 O

4. F - Ow _=_ -Ow by AI

5. F-Ow -=- -Ow by 1, 2, 3, 4 and PR

6. F Ow -O w by PIR

Because of these last two theorems we can collapse any string of consecutive identical modalities
such as 0 ... 0 or ... 0 into a single modality of the same type.

rhe following theorem establishes that 0 is the dual of 0. Note that At states that 0 is the
dlual or 0, i.e., *w 0

T5. (0 -w) (o?)

Proof:

I. - I-) w by I'

12



2. -(0 -w) w by 00

3. I- ( ,-w) w by Al and Pit

4. I- (0w) O(-Dw) by PR

T16. D(Wl W2) D (O wl D OW2)

Proof:

1. I-(wI D w 2 ) (-w 2 D -w,) by PT

2. I- (wl D w2 ) 0(--w 2 D -w) by 00
3. I-D(-w 2 D w (D'w 2 D D1-w) by A2

4. I- (0 -w 2 : 0 - w) - (-w 2 D -Owl) by Al and PR

5. F (-Ow D -Owl) -(Owl : Ow2) by PT

6. F- t(wt D W2) D (Owl D OW2) by 2, 3, 4, 5 and PR 1

The following theorems show the interaction between the temporal and the boolean operators.

T7. F-n(w, A Wo2 ) (Owl A Ow 2 )

Proof:

1. - (w, A W2 ) D wt by PT

2. I- (wt A W2 ) D Owl by 00

3. F (w, A w 2 ) D w2  by PT

4. - D(wl A w 2 ) D Ow 2  by 00

5. 1 D(w, A w2 ) D (Owl A Ow 2 ) by 2,4 and Pit

6. I-w, D (w2 D w, A w 2 ) by PT

7. - Ow, D D(, D (w, A W2)) by 00

8. I' o(w 2 : (w, A W2)) D (O 2  O 0(w, A W2 )) by A2

9. - Ow, D (OW2 D o(w 1 A W2)) by 7, 8,,d PR

10. F (Owl A Ow2 ) D 0(w, A W2) by PR

13
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1. I- -0(wl A w 2 ) (Owl A Ow 2) by 5, 10 and IPR J

T8. l- 'Z(w, V W2 ) (Owl V < W2)

Proof:

1. I-F -(w V w2) E D(-,w1 A '-w 2) by I'T and 0 0

2. I- O(-wl A -w 2 ) ( -"w1 A O.-w 2 ) by T7

3. I- (0' w, A 0 w2) '-WV0'-I V 0 D-w2) by l1lZ

4. 1- 0-,(wI V w2) -- -&wI V 0 W2 ) by 1, 2,3 and 1PR

5. I -O(wl V w2 ) E -(0w V 0w 2 ) by AI and PIR

6. F O(wt V w 2 ) - (Owl V Ow 2 ) by PR

Note that because or the universal character or o it can be distributed over A (Theorem "r7),
while o, which is or existential character can be distributed over V (Theorem r8). Next, we show
that interchanging a temporal operator with a boolean operator or the opposite character yields
implication in one direction only; the implication is not necessarily true in the other direction.

* 'r9. F- (0W I V 0OW 2) D 0(W I V W12)

Proof:

1. t- Owl D 0(wI V w 2) by PT and 0 0

2. F 0w 2 D (w1 v w 2 ) by PT and 0 0

3. I- (Owl V Ow 2) O 0(wi V W2 ) by 1, 2 and PR J

'10. - <>'(w, A W.2 ) D (Owl A Ow 2 )

Proof:

1. - O(wl A W2 ) i Owl by PT and 0
2. F" O(wI A 102) D 0 w 2  by [)T and 0 0

3. - 0(w1 A w2 ) D (0w 1 A 0>w2 ) by 1,2 and IT J

14



"rml. - (Owl A Ow 2 ) D 0(w, A W2 )

Proof:

1. i-Wl D (w 2 D (w, A w2 )) by FT

2. IF owI D 0'(w 2 D (w, A w2 )) by 00

3. F ](w 2 D (w, A w2 )) D (OW2 D O(w, A w2 )) by T6

4. F Owl D (<W 2 D O(w, A W2 )) by 2, 3 and PR

5. I-(Owl A Ow 2 ) O(w, A w 2 ) by IR

Next we consider the commutativity properties of the next operator 0. In view of A4, 0
is self-dual and can be considered to be of both existential and universal character. Indeed it
commutes with every other boolean or temporal operator as well as with quantifiers.

'l12. F O(w1 A W2 ) - (Owl A Ow2 )

Proof:

1. F W, D (W2 D (w, A W2 )) by PT

2. ow, D 0(W 2 D (wI A w2 )) by 00

3. - O(w 2 D (w1 A w2 )) D (Ow 2 D O(wl A W2)) by A5

4. I- Owj A (Ow 2 D 0('w1 A w 2)) by 2, 3 and I'R

5. 1- (Owl A Ow 2) D 0(w A W2) by IR

6. F(wl A w2 ) Dt by PT

7. - O(w1 A w 2) D Owl by 00
8. F(wjAw 2 )Dw 2  by PT

9. F O(wl A W2) D 0w 2  by 00

10. F O(wl A W2) D (Owl A O W2) by 7, 9 and IllR

11. F O(wl A w2) (Owl A Ow 2) by 5,10 and [)R

T13. F O(wt V w02 ) (Owl V Ow 2 )

15



Proof:

. I- 0(-w, A -w 2) _ [(o.w,) A (o0-.w 2) by 'r12

2. I- O(-wt A -w2) [Ow,) A (-'0 W2) by A4 and PR

3. F 0-(W, V W2) [(ow) A (Ow 2)] by 00 and PRI

4. I- ,O(wz V w 2 ) - WO 1 V O0 2 ) by A4 and Pl1

5. 9- O(w1 V W 2) - (Owl V Ow 2 ) by PiJ

r14. F O(w1 D W2) - (Owl D OW2)

Proof:

1. - 0(-wt V W2) (O-wt) V (Ow 2 ) by T13

2. I- 0(W I V W2) - W (-o 1) V (0 2) ly A4 and PR

3. F O(wi D w2) (Owt 0 Ow2) by 0 0 and PRj

T15. lO (w1  W 2 ) (Owl Ow 2)

Proof:

. - [O(w, W2 i) A O(W2 D w,)- [(Owl D Ow 2 ) A (Ow2 D Owl)]
by 'I'14 and Plt

2. F 0[(in, D W2) A (W2 D w,)] [(Owl D Ow ) A (Ow2 D Owl)]
by '12 and II1

3. F O(wt -W2) (Owl 0 W2) by 00 andPit

The previous theorems show that the next operator, 0, commutes with cach of the boolean
operators. The following two theorems establish commutation oi 0 with the temporal operators
0 and 0.

TI6. FO w =O w

Proof:

1. I-Ow:3(wf D0w) by PT
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2. F- Ow O 0(w iOw) by 00

3. F -(w D 0 Ow) D 0( Ow 0w) by A7

4. I-OO(w D Ow) 0(w :) DOw) by A8 and 00

5. I- O(w D 0 w) D (Ow D 00 w) by A5

6. I- Ow D (Ow D 00w) by 2, 3, 4,5 andPt

7. F -Ow D Ow by A3

8. F- Ow D 00w by 6,7 and PIt

9. I- 00w D 000w by A7 and 00

10. I- 0Ow - 00w by CI 0

11. F OOw D Ow by A3 and 00

12. F-FOOwDFOw by 00

13. I- O0w DOw by 10, 12 and Pt

14. - O lw = Ow by 8,13 and I)RJ

T17. F-0 0w >0w

Proof:

1. 0 0 -W 0 0 -W by T[6

2. I- Ow -00w by At, A4, 0 0, 00 and Pt

3. F 00w =00w by PR

T18. F00w 0 <0w

Proof:

1. FO w D '00w by A3

2. F- w D 00w by A7

3. - 0w D 000w by O0

4. 1- 0O0w D 000w by I17and PiR
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5. I- >Cw D OOw by 3,4,and PIZ

6. - 0Ow DOC w by CI

7. FOD>0w =00w by 1,6 and PR

17l9. F <>DOw = 0Ow

Proof: By duality from' T18.

r 'hese last two theorems together with T3 and ri (0 0 w 0w and 00 w = Cw, respec-
tively) give us a normal prefix form for a string of the form

MrM ... Mk(),

where each ni is either 0 or 0. We use first T2 and T3 to collapse any substring or the rorm D'*
and 0" to a single 0 or C. What remains must be a string or alLernating 03 and 0. If it contains
more than one operator then it is equivalent by T18 and TIO to a string with just two operators
the last two. Consequently any string such as the above must be equivalent to one of the following
four possibilities:

0 w, Ow, 00w or 0Ow.

In the more general case that the string also contains some occurrences of the next-tine
operator 0, we may use the commutation of 0 with both 0 arid 0 to obtain the four normal
forrits:

Ok w, OkC>W, Ok'0C*W and Ok*Ow

for some k > 0.

TP20. -l w (w A 00w)

Proof:

1. - w w by A3

2. I- w D 0O w by A7

3. - Ow D (w A O0 w) by 1, 2 arid Pit

4. F 00w D O(w A 00lw) by 00

5. F (w A 00wiv) D 0(w, A 0 0 w) by Pit

18



6. I-(w A 00w) D O(w A O0w) by CI

7. - A(w A O0w) D0w by 'Tand 00

8. -(w A 00w) 0 w by 6, 7 and IR S

9. l- w - (w A 00w) by 3, 8 and PRJ

T2 1. Ir 0 w -- (w V 0O0w)

Proof:

1. 0 - (-w A O0-w) by T20

2. F- 0 w -(w V -0 0 w) by Al and PR

3. -00-w - 0 w by A4, Al, 00 and PR

4. l- 0w - (w V 00w) by 2,3 and PR

Theorems T20 and T21 give a ixpoint characterization of the 0 and 0 operators respectively.

They ,ach give an equation using only boolean operators, the formula w and the operator 0. The
solutions to these equations are Ow and O w respectively. This shows that, in sonic sense 0 is the
most basic operator since the other operators may be delined by means of' fixpoint equations using
0. Axiom A9 similarly characterizes the U operator by a lixpoint equation.

1r22. l- (w A 0>-w) D >(w A 0-w).

This is the dual of the "computational induction" axiom A8. It states that if w is true now
and is false sometime in the future, then there exists some instant such that w is true at that
instant and llse at the next.

Proof:

1. -F(w D w) D (w D 0-w) by A8

2. -(w 0 Ow) (w ) Ow) by P'Rl

3. F(w A- 0w) D 0 (w D 0 w) by T5 and PR

4. I- -(w D O w) - 0 (w A - 0 w) by IPT anid 0 0

5. - (w A - '0w) D O(w A - 0 w) |y 3, 4 and |)R

6. I- (w A 0--w) 0 (w A 0 -w) by T.5, A4 and [IRt
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The following derived rules correspond to proof rules existing in most axionratic verification
systems:

Consequence Rules

OQ rule OQ rule OQ rule

u- ul D U2  I'- u D U 2  F ul D u2"U,2 D IOv, IU2 D0v I-IU2 D O vI
I- : V2 I-t3 V2 V'-173 1)2

I-uI D fly 2  I-u 1 3 Or2 I-u 1  0v 2

Proof of OQ:

I. I- u1 D U2  given

2. I-u 2 i VI given

3 I-v 3 v 2  given

4. VI- D Or2 by 3 and 0

5. -u 1 D OV2 by I, 2, 4 and IR

The f1Q and OQ rules are proved similarly by the 0 f--rule and 0 O-rule, respectively.

Concatenation Rules

F1C rule OC rule

-u 3 v F u D v
Fv Ow -v D0w

FUD w I-u D Ow

Proof of IC:

1. I-u f v given

2. I-v 0 -w given

3. F-lv D 00w by 2 and flf0

4. I 0v :f ) Ow by T3 aud IPR

F 5. I-u D w by 1, 4 and PR

- noThe OC rule is proved similarly by the 0 0-rule. Note thati (le corres)on(ling OC ridh does

. not, hold.
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UNTIL DERIVED RULES AND THEOREMS:

Right Until Introduction RUL

iF w D [v V (u A Ow)]

I- w i(UUv)

* Proof:

1. I-w D c'v given

2. F wD [v V(u A 0w)] given

3. F- [v V (u A O(?uUv))] D (uUv) by A9 and P'R

4. F -(uUv) D[-v A (uV O'IuU7))] by A4 and P'R

5. F- [w A -(uUv)1 D [-v A 0Ow A 0 '-(uUv)] by 2, 4 and PZ

6. F- [w A -'(uUv)] D [-v A O(w A "-(uUv))j by T12 arid PR

7. F- [w A '--(uUv)] D C-v by I)CI,
taking u to be w A '-(uUv) and v to be -v

8. 1F [w A -(uUv)] D --' v by 1, 'l5 and P"R

9. F iv D (luv) by 7, 8 and Pi1t

The ZU I rule, together withl axiomns A9 anid A 10, can be viewed as a characterization or the
uiUv constru(:t as a maximal soluition 01l thle two imTplications: I

IzD [v V (u A O x)]

The ordecring by which inaxiinality is defined is the ordering induced by defining false C true.

Axiomns A9 arid AIO imply that

(uUv) D [v V (u A OuUv)]

* (uiUv) D OZv

* nthus they show x = uU v to be a sol ilion or the implications (*.The rule RUI stales that any
other soluition x = w twii salisry w D (uUv) which linplies that wlhenever w is truie so is tUlv.

* T~nterpret e(I in ouir ordJer ig this is representable as wv E (uUv). 'Phiis x = uUv is the imiaxirrial
* solution to Wp.

4 ~A i intiilive cxplanation as tO "1,3 liru v is indeed tow maxitmal soluition or (*)canl be given as 9
lollows:
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Let w be any proposition satisfying (,) everywhere in a sequence or so, s, . We note

that (*) may have many solutions. In particular z = false is a trivial solution. I lowever an obvious
property of every solution w is that if ?v is true in some state si, this state must satisfy u and the
7 ext state sji+ must also satisfy wv unless si satisfies v. Thus once w is true it can stop being true
only in a v-sLate. In view of the second implication such a v-state is guaranteed. Consequently
whenever w is true in a state, uUv must also be true in that state.

Left Until Introduction - LUI

I v V (u A ow)J D W

F- (UUlV) D i

Proof:

1. FIv V(u A Ow)] D w given

2. I- uUv D [v V (u A O(uUv))] by A9 and PR

3. F -w D [-v A ('-u V O w)] by 1, A4 and I'R

4. F[uUv A -w] D [-v A u A O(uUv) A O 'w] by 2, 3 and PR

5. F [uUv A ~w1 D [O(uUv) A O-w] by PR

6. F [uUv A -w] D O(uUv A -w) by T12 and PR

7. F- [uUv A -wi D O(uUv A ,-w) by CI

8. F" [uUv A ,w] D -v by 3 and I'R

9. F- 0l(uUv A ,-rw) D 1 '-v by 00

10. I- [uUv A .-.w] :D -'. v by 7, 9, Al and PR

II. F [uUv A -)w] D v by AIO and PIR

12. l- u1v D w by 10, 11 and PR_

The LUI rule, together with axiom A9, can be viewed as a characterization of the uUv con-
struct as the minimal solution of the implication:

(,,) [V (u A 0x)] D x

Axiom A9 implies that x = ulv is a solution of (**). The LUI rule states that any other solution
of (**), z = w, is implied by uUv. This means that whenever uUv is true so is iv, which is
interl)retable in our ordering as uLUv F w. Thus uUv is the minimal of all possible solutions.

Note that. (**) possesses many solutions. Fn particular x - true is a trivial solution. lowever,
the miininmal solutioi is tinique and is given by uU v.
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UU Rules

F UI Du 2  -uj E U 2

(a) I- t V2 (b) I-v 1 = V2

F Uvj D UVV 2  "V- utUvi U2 UV 2

Proof of (a):

1. -u 1 D u 2  given

2. F-Vj v 2  given

3. F- [V2 V (u2 A O(U .U 2 ))! D ,U2 1V by A9

4. F (v V (u, A O(u2 UV2))i D U2UV2  by 1, 2, 3 and PR

5. F- u1 Uvj D u2 Uv 2  by LUI

The prool'or part (b) I'ollows from (a) by propositional reasoning and the symmetric application
or (a). J

This rule together with the 0 0", 0 0 and 0 0 rules show that all the temporal operators
are monotonic in all their arguments.

F
T23. F- (-w)Uw - Ow

Proof:

1. F- (w)Uw 0 w by AlO

2. F- Ow D [w V O w] by T21 and I1

3. F -zo D 1w V (-.w A 00w)! by PR

4. FOw D Ow by PT

5. F Ow D (-w)Uw by 3, 4 and RUT

6. F-(-w)UIV Ow by 1, 5 and [PRJ

'124. F (Ool A ow 2 ) n (WmUW 2 )

Proof:

1. (-Owt A OW2] D W2  by NZ
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2. - [0Dwl A 0 w 2 1 i[(w A O wl) A (w 2 V O w, )]

by PR, '1'20 and T21

3. (0 (wI A ,W2) D [W2 V (W1 A 00w A 00w2 )] by PR

4. F ( w A 0W2) D [w2 v (w, A 0(0 w A 0W2))]l by T12 anid PR

5. F [Owl A 'w2j D wIUw 2  by 1,1 arMi RU ,

taking w to be Owl A 0w 2, u to be wl, and v to be W2

T25. F (wIUw 2)Uw 2 = wIUw 2

Proof:

1. F (w 1 w 2 )Uw 2 D [w2 V wIUw 2 ] by A9 arid IR

2. -w 2 D WIUw 2  by A and IR

3. F (WIUw 2 )U w2 D wUw2  by 1, 2 and I'R

4. F 'VuUw 2 D <w 2  by AI0

5. F wIUw 2 : [W 2 V (w1 A 0(wI U:4)) by A9 and IR

6o . ' WIUW2 D ['1 2 V (WIUW 2 A O(WIUW2 ))] by IT

7. F w*Uw 2 i (wtUw 2)Uw 2  by 4, 6 and RUI

8. - (wIUw 2 )U w2  wlUw 2  by 3, 7 and PR

* r26. FivUv;2  wUt(WiUW2)

Proof:

1. F 1V2 D wIUw 2  by A9 and I'R

2. F w, Uw 2 D wUl('1,,Uw 2 ) by UU

3. F wIU(wIUw 2) D [w, Uw 2 V [wl A 0(w1U(wUw 2))]] by A9 and I'R

4. F -vU(W,,UI 2) D {.,2 v [w,, A O(WUW2 )] V [in1 A O(WU(WlU?, 2 ))I}
by M and PI

5. F WI U (wIUw2) : {w2 V [u), A 0(1,11 Uw 2 Vw, U(wI U'11 2))]} by 'r1 and PR

6. F [ 1 InUw 2 v I,, U(,,,U, 2 )] D 11)1U(W,1UW 2) by 2 arid Rl
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7. F WIU(WjUW2 ) D (W2 V [WI A 0(wU~UWlU 2 ))I}
by 6 with 0 0, 5, and Pit

8. F- wIU(wi UW) D <)(w1 Uw 2 ) by AIO

9. F w 1Uw 2 D CW 2  by AI0

10. F O(U, UwU2 ) D <: w 2  by 00

II. F- wIU(wIUw2 ) O cw2 by 8, 10, T4 and PiR

12. F wtU(wIUw2 ) D wtUw 2  by II, 7 and RUI,
taking w to be w 1 U(wl Uw 2 ), u to be wl, and v to be w2

15. F wUw2  wIU(wIUw 2 ) by 2, 12 and PIR

U In.ertion Ul

F- v F , v
(a) (b)

F uUv F uUv
ror an arbitrary u

Proof:

(a) 1. -v given

2. -v DuUv by A9 and PR

3. 1- uUv by 1, 2 and Pit

(b) 1. Fu given

2 F 0 v given

3. FIOu by I and 1

4. F(Olu A 0v) D u Uv by T24

5. FuUv by 2, 3, 4 and PR 1

U Concatenation UC

F VI  tn 2

F v 2 : uv 3

F v 1 :D uIv 3
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Proof:

1. VI v3 i UUV 2  given

2. I-v 2 D uUv 3  given

3. F- UUV2  u1L(uUv 3 ) by U U

4. I- vD D uU(uUv 3) by I, :1 and PR

5. - v D uUv 3  by T26 and IR

T27. F- [nlw A w2 UW31 D (ivy AW2)U(wi AI 3 )

Proof:

I. - w 2 Uw 3 i w3 by AIO

2. F [iWj A w2Uw1v] D (0 w 1 A 0 w 3 ) by IR

3. F- [EIvl A w2U1-J ] D C(w, A W3 ) by TII and IT

1.F w w 17113 V( 2 A O~ 2 U 3 )Iby Ag and IT~

5. F [D, A ,r'2U 3j D [(O A W3 ) V (Ow, A W2 A O(w2 Uw:i))] by PRoi

6. -(OwtI A 1113 ) D (in1 A w3 ) by A andI IdR

7. F- [rw1 A IV2 A O(?V2U 1 )] a [w, A w2 A O~lvw A O(w2U '..
by T211 id !'R

8. F- [ui A ,,2 A O(w'2U,,,3 )j D [(w, A 7, 2) A O(Oi A W2 Uw:)]

by '12 and PR

9. F- (Owl A , 2 Uw:i] D {(U,, A w;n) V [(Wt1 A W2n) A O(Elw, A w,.2 U,, 3 )j}
by 5, 6, 8 an( IT

10. F- [O0 wl A wI2 Uwa] D (win A w2 )U(wi A wa) by 3, 9 and RUIJ

The next. Ihort'n displays Lhe commultation relation bet wecn thie 0 and the U opuraltors.

'r28. F (OV,)U(O7V2) 0(.,,, Uv 2)

Proof:

. F 1 ;,2  [).2 V (,, A O(,,U 2 ))] by AU
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2. F o(,VU 2 ) [O,,, v (o,,,, A oo(WU,2 ))l
by TI2, TI13, 00 an d I'1

3. F [OW2 V (Owl A OO(wIUw2 ))] D O(,,,U'w2) by I'R

4. I- (0 w)U(Ow 2) 90(wr O UW2 ) by LUl, taking w to be wUu,

5. 1- IVtU'w2 D Ow2 by A10

6. F- O(w Iw2 ) D 00w 2  by OO

7. l- O(wtU w 2 ) D 00w2  by T17 and 1PR

8. F O(WUw 2) D {Ow2 V [Owl A OO(wUw2 )} by 2 and I1

9. F o(,IUw2) (ow,)U(oW2 ) by 7, 8 and RUI,
taking w to be O(wI Uw.), 7t to be Owl, and 'v to be 0 W2

10. I- (Owj)U(0IU2 ) - O(wI UW2 ) by 4, 9 and I'1._

alaing classified Dl as a universal operator, 0 as an existential operator and 0 as being both
univers'd and existenti-l, we observe that U is universal with respect to its first argument and
existential with respect o its second argument. This yields the commutation properties listed in
129 and 130.

"T20. F (iln A 2)U 3, - [wI Uw 3 A 'w2 U'w 3]

Proof:

I. - (7n1 A w2) : wl by l'T

2. F (?nl A'1w2 )U'l 3  0 1 ,wU3  by UU

3. F (w I A w2 )U w3 D wg2UW 3  similarly

4. F (7, A u12 )UW:3 D [wI VU3 A w2Uw 3I by 2, 3 and IR

5.- F 'I "Uw.3 D O I 3  by A I0

6. F (iu1 UW; A in2 Uw 3[ D O0W3  by Pl

7. F- wli 3  ,,D {u, V j, A o(WUW3 )1} by AJ and IPR

8. - w 2 U?;:i D {7,) V ['02 A O(w 2 Uw..)jj} by A9 and 1PR

9. F' [ILL 3 A w2 Uw;J D {w:; V [(In A w 2 ) A O(IlUw 3 A ,o2UwI3)j}
by 7, 8, "T"12 anl I11

0. F- ,,U .,.3  A 11 U,,,[ D (,,, A' w,2)U ,3  by 6, 9 and l .,
taking ,, to be (,, J..,,) A (,n2 U ',,,3), 7t to be in, A ,,,2, and v to h,, ,?;
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11 FI (wI A W2)UwV3  17V'w UIV3 A W2UW3 j by 4, tO aud PIR

TP30. W- wU(V 2 V W 3) [WI UW2 V W 1 UI 3]

Proof:

L. F W2 D (' 2 V W3) by IPT

2. l'wTVUW 2 D WIU(W2 VW 3) by titi

3. l'wTVUW 3 :) WIU(W2 Vt 3) similarly

4. F- [WIUW2 V WIUW31 :D WiU(W2 V W3) by 2, 3 and PR

5. FWIU(; 2 V W3 ) D {(TV2 V W3) V ['wt A O(WtU(W2 V1V3 ))J} by A9 aind IT

6. [W2 V (ail A O(wVIUw 2))] :D ?V1 Uw 2  by A9 arnd P)R

7. F -(WtUW 2) :) {-~W2 A -'wi V O-(WIUW2)} by A4 and P1R

8. F- iwiUW3) {-~W3 A ['-wi V OiwrIUW3 )} similarly

9. l' [W iU (TV2 V Wi3) A -"(TVIU W2) A -"(W I U W3)] D

1-112 A -W3 A TV, A O(WIU(W2 VW3)) A O"'(WIUW2) A O-(WIUW3)]
by 5, 7, 8 and IT

10. F [w, U(W2 Vw:,) A iwi IUW2) A "-(W1 UW3)] D

H10"(2 V W3) A O[IWIU(W2 VIV3) A -(WIUIw2) A '(Iwi)I}1
by TI12 anl IT

]Ii F [WIU(W2V'W 3) A "'dn'tUW 2) A "-(WtU7w3)J D 0'-(W2 V W3) by DCI

12. F- W IU(W2 V W3) O (U12 V W3) by AIO

13. F Wi U(w;2 VwaV) D"-[".(W, UW2) A "-(Wi'dW3)j by 11, 12, Al and PR

14. F_ wU (w2 VW3) D [W IUTt 2 V W IU W3 1 by IT

15. F 'TV1 U(wI2 V Wt3) [w1t UW2 V W1 UW3] by 4, 14 aind P'R

T31. F' [OW1 V O~W21 D [("-WI)UW2 V ('-~W2)UWjI

Proof:-

I- F' [OWj V OT2 * (IV[ V W2) by TP8 and Pit
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2. l'- 0(?V1 V W2) D (-(Wt V W2))U(Wi V 102) by TI23 anid P'R

3. l'- O(W1 V W2) D ("-wl A '-W 2)U(?i 'v W2) by UU and PR

4. 1- O(wt V w2) D [(w 1 A .w2)UwI V (-wt A -W 2 )Uw 2] by T30 and PRlt

5. - (-wi A -W2)Uw D (-w2)U, by UU and I'lP

6. F (-wi A -Ww2 )Uw 2 D (-wi)U'w2  by 1U' and PIR

7. 1- O(wI V w2) D '-'W)Uw2 V (-w 2 )UWiJ by 4, 5, 6 and I'R

8. F (Ow 1 V Ow 2 ) D [(-wI)Uw2 V ("-w 2 )Uw 1 ] by 1, 7 and I)R

The following two theorems display the one way implication resulting from the interchange of
the U with a boolean operator of the opposite character.

T32. F wtU(w2 AW 3 ) D [WI Uw)2 A WtUW 3]

Proof:

1. -F (w2 A W3 ) D W2 by iI'

2. F- wU(w2 A w3 ) D w w w2  by UU and P1

3. F wi U(w2 A wI3) D wIUw 3  similarly

4. - U1 U(W 2 A W 3 ) n [IVIU'W 2 A wrUwU3 ] by 2, 3 and PT 1

TP33. F' JWI UW3~ V W2UW3] (wIV V W2 )UW3

JI
Proof:

1. F-w, D(w V w 2 ) by PT

2. Fw 1 iwa3 D (wI V'w2)U3 by UU

3. F 'w12 D (wI V w 2) by T1

4. F- w2U w 3 D (IVt V w2) U 3  by U U

5. l' [wI1 'Iw3 V w2Uw 3 ] D (wI V w2 )Uw 3  by 2, 4 and Il

(w3, 2)Uw3  [ w2 UW 3]
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Proof:

1. IwD W2 )UW3 3 0 W3  by AIO

2. F [(W I 2)U W3 A W IU W3 1 D

(W3 V [(WI D W2) A 0(W DW 2)UW3) A w, A O(WIUW3j)1}
by A9 an(I NR

3. F- [(WI D W2)UW 3 A WIUw31 D

{W3 V [W2 A 0((w, D W2)UIV3) A O(WIUan 3)]} by P'R

4. 1- [(WI D ?V2)UW 3 A WrlUW3J

{W3 V [W2 A 0( D W2)U7V3 A wiUw3)]} by TP12 and PIR

5. F- [(WI D W2 )UW3i A Wj UW3] D W2 UW 3  by 1, 4 and RUI,
aking w to be ((In D W2 )UW3) A (I 1 UW3), utbewand V to be W3

6. F (WI I w2 )UW3  [w1IUW3 D W2 UW3] by )R 1

TP35. F [W1UV2 A('--W2 )UW3] D W1 UW3

Proof:

1. F ("-V2)UW3 D W by AlO

2. F [WIUW2 A (-W 2 )UZV3I O W3  by PRl

3. F WIUwI2 -J {W2 V [,A O(?VIUW2)I} by Ag and IPR

4. F (-W2)UV3 D (W3 V [-W2 A O((-W 2)UW 3)]} by Ag and P'R

5. F [WIUW2 A HvW2)UW 3 ] 0

{W3 V [w,1 A -W2 A O(WIUW2) A O(V-W2)UwV3)I} by 3, 4 and P)R

6. F [iUw2 A (-W2)UW3]

{W3 V [wn1 A O(INUW2 A ('-V)2)UW3)1} by TP12 and 1NR

7. F [WIn UW2 A V'W2)UWi 3] W wUW3  by 2, 6 and RUTJ

'[36. F ?VIU (W2 AW3j) (I Uw1Uw2)U W3

Proof-

I. F vU (W2 A Wn3) D O(IV2 A W3) by AIO
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2. l"-(W 2 A W3 ) D W by I 'T

3. l'- C>(W2 A W3) D C0tW3  by 0>Q

4. l-WIU(W2 Aw 3 ) D COW3  by 1, 3 anid P)R

5. FI- U (? 2 A ?V3) i (W2 A t103 ) V [W I A 0(WrtIt(?V2 Aw 3))] by A9 arnd PR

6. F (W2 A W3 ) i Wo2  
by lI'

7. F-WIU(W2 AW3) D W1UW2  by UU

8. - FW1 U(W2 A W3~) D {W 3 V [WIUW 2 A O(W1I('1w2 A W3))]) by 5, 7 arnd PR

9. l'- W IU(?V2 A 103) D (WIUW 2 )Uw 3  by 41, 8 aid( RUT

i

Thle following two theorerms are rererred to as "collapsing" theoremns, since they may be iised

to derive a consequience ol'smialler riestinrg depth rrom a nested unrtilI expression.

* '1T37. F (WI1 UW2 )UW3 D (Wo1 V to2)Uto3

* Proof:

L. 1 wF WUU?2 D 1V2 V (w, A O(w, IUw 2 ))J by A9 and PR

2. F u'1 Uwo2 D (Wo I V W2 ) by PR

3. l- (wI w2 )UW3 D (wI V W)Uw3  by UUi

3.38. F W I- U(w 2 Uw:,) i (W I V w 2) U w 3

Proof:

.F t1 U(W 2 U10 3) i O UIU~t3) by AIO

2. F wI2Uto3 D 0 W byAl

3. F- '11 U (w2 U 3) D iW3 by I, 2 and C

4. F- oI U('W2 UW3) D {W 2 Uw 3  v [W1 A O(wU(w2 U 3 )) } by M arnd NR

5. F- W1 U(wV2 U 3) D {W 3 V [W2 A O(w (A2U w3)) V ), A b( U(w72 Ut d))J}

by A9 and( PR

6. l- 2 U 3 D l U(w 2 Uo 3 ) by A9 an8" d .

7. F ["'2 A O(W2 U.11)3)1 oto 'V 1"2) A (1 1U( 1 2UW3)) by 0 0 and I

Lll
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8. 1- ["ll A O(,vi U(w 2 U', 3 )) D [(V I V V)2) A 0(wiU(w 2 U,,,3 ))] by VIR

9. - W U(, 1,,U,, 3) D { Vw3  v [(?1  V 72 ) A 0(WU(W2UW3)))j}
by 5, 7, 8 and I1

I0. I- w1 (w2 Uw 3) (w1 V w2 )Uw3  by 3, 9, and RuI

A very useful derived operator is the unlees operator u £ v being defined by

u-tv [Du v (uuv)1.

The unless operator does not insist on the fact that v actually ha)pens but it requires that u 1
holds until such an occuirrence. IF v iever happens u must hold forever. This operator is related
to the binary "as long as" operator p 0] q, reading "q as long as p," introduced by LIamport in [1,2].
The meaning of this construct is that q holds continuously as long as p is continuoisly m aintained.
We may express pOq by:

pf0q - qit(-p).

Following is a rule for establishing the unless operator.

Unless Introduction W. [

I-u :D O(u v v)

I u D (uiv)

Proof:

I. Fu : 0(u v v) given

2. F iu D [Ou V Ov] by T13

3. F -(uUv) D {-v A [-u V Oi(uUv)]} by A9, Ti and PR 1

4. F -(uiOv) D O-v by 00 and I'R

5. F [u A (uUv)) D [u A O (uUv) by 3 and PR

6. F [u A -(uUv)] D [u A 0 -(u v) A , ,OvJ by ,4, 5, A and I'll

7. F-[u A -(uUv)] D [u A Ou A 0 (uUv)] by 2, 6 and IT

8. F-[u A -(uUv)] D [u A O(u A ,(uUv))] by T7 and IR

9. F- [u A -(uUv)I D 0li by D)CI

10. F u D (lu, v (U.V)) by I'R
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II. F u D (it v) by delinilill orIt

* lhis coticlhies the descripl,il or thl' propo)sitional seclih of' general temploral logic. Ilihe
i:i'onalic syst emi presented for I his section of' the logic is knowni to be comphLo,, and l Ih, validity

probl'm decid:bhle ([lPSI). (onse(jicrtly, th're exist.s a proi'ilure that. Lests (c'ch rIorrht in i 11,
(Proplositionial lemploral Logic) Ior validity, and constructs a proof in thc presented systvi if' the

* stat cneit, is vtlid. Ihe procedure given in [IRS] lakes exponential time in the size of' the tested 0

forinula.

4. QUANTIFIERS

,"Siie, w' irtend to use ti.rms and prdicales in our retisorling we have Io cxlend our yst.vfn to
* anii. inlividuail variables, t ,rms :|(d (huantilicatiori. Let, us consider addit.ional axion.is iuvolving
(flwialtilhirs ard their inieraction with the It.l:iporal operators.

NMAXOMS:

All. F ',x.w . -w

A 12. I- (Vr.u(x)) D u,(t)
where t is any term globally free ror x in w

Af 3. F (V. Ow) D (OVx.,,v)

In these axioitls, x is any global individial variable. Axioms All and A 12 are the lnu:d
j)relCi'C;Lle C(Lh'll. axioms: All defines -, as the dual or V and A 12 is the instantiation axiom.
Axiom A13 is the lBarcan fornula For he 0 operator; it, stales that since b<oth operators V anId 0
li;ve universal chiaracterislics lhey coti|ruie. We use Lhe Sur st'iIl tio noatL.Iion w(x) replaced by
4(1) to lnote tlhe Suibst itit, ,ion ol the terin t lor all rree occurrences or x ill w.

A terin t is sauid to be globally free for x in iw if substi, tlion or t ror all rree occurrences of'
j: il, in: (a) does .,,,, creat ne )w olirid o,(lci'retces or (global) variables, and (b) does rot create
nlew oc urreri-ccs of" local variades in tw scoe' ofr a ternporal operato.or. A trivial cas(,: if' I is x
itsel', hen I is frce For r. Condfition (a) is the onie stipulaited il classical pred icate lopic. Condition
(b) is special to modal and teiniporal logics with quanitilicat ion. Condition (b) is essential l'or A 12, 0
because wit hunl, it, we (:o|I(I derive the ormula

(v:. < Y)) o(Y < y),

which is riot valid ror a local variable y.

An addi tional rule of' inrvrem(,c is:
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INFERENCE RULE:

R. V Insertion V1 p
I-u v

I-u v x.v
where T is not free in u.

DERIVED RULES AND THEOREMS:

Irm RN we can ohtain the derived rule

Instantiation Rulr INST

I- w(t)

where t is ,ny tern globally rree ror x iii I.

Proof:

I. F- w() given

2. I- Vx.w() by VI (Utki i ga to be true)

3. F- (V r.w,(x)) D w(t) by A12

4. I- w(t) by 2, 3 and MI'
I

'lhw following are thc dials or A I2 and [R4 for the existential quanLiricr 3:

"r39. F w(t) D i x.,,(z)
where t is any term globally rree For x in to. 4

Proof:

1. F (Vx.'-~ U-W~) -""'w(t) by Al12

2. F- (-].x.,,(.c)) D -'w(t) by Al and ['R I

3. F- w(t) D Ll.w(x) by l'R.1

Note again that, we need here the addition:l condition (h) ensuring that the .islil,iution ol It
for x iii tv does not, creal e new occui rrenes or local variables in Ihe scope of a lo(dal operator.
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A Insertion 11
PU v

"-- I-; Fu D v

FIx.rs1 D v
where x is not rree in v

Proof:

1. IuDv given

2. I- v D -a by 11

. 3. F - vD Vx.,-u by VI

'1. I '-v :3 ':x.u by All and N?1

5. Ix.uD v by I'1

VV Rales

( u v F-u V
(b)

FVx.U 3 W-v F VT..r V.,

Proof of (a):

i. F-Y.u 3 u by A12

2. F u v gi Ven

3. F Vx.u 3 v by 1N1Z

,1. F Vx.u D Vx.v by V -, sivc Vx.u contains no I'ree occturirives of x.

,rle (b) Ien tollows by propositional r(easoniiing

11 Rules

F UDv Fu v
(a) F3x.u lx I F I..u - .

Proof of (a):

I. F- u v given

2. F (-v) D ( i-,t) by I'R

:1. F (Vx. - ,,) 3 (Vx. - ,) by w

4. F (-,AX.v) D (b X.iL by AIl :Itml 11
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5. I" 3x.u D 3x.v by iR

Rule (b) then follows by propositional reasoning.

Frorn the axiom Al,

F- <W - W,

wc can clearly deduce the formula

-di V 0 -Wt) =--( V ~--W)j

by propositional reasoning (PR). However, we cannot deduce by PR the formula

OO'--w =O

or

Vx.O C =Vz. , w.

Iere, the replacement of 0 -'w by - 0 w is under tie scope of the operator 0 and the quanitilier
Vx, respectively, and thus cannot be justified by propositional reasoning alone. For this reason we
need the following equivalence rule.

Equivalence Rule --- EIZ

Let w' be the result of replacing an occurrence of a subror-
mula vl in ,w by V2. Then

F~ VI V2

Proof-

By induction on the structure of w.

Case: w is vl. Then w' is v2 and I- vI V2 implies l- W W'.

Case: w is of the form -u. We assume that F- vi F V implies I- u u'. Then by propositional
reasoning - -u - -u', i.e., - w - w'.

Case: w is of the form u1 V u2 . We assume that if F vI v2 , then - ul u-u and F U2 u'.
Then by propositional reasoning F (u, V u2 ) =-(u; V 2,), i.e., F w = w'.

The cases where w is of forms ul A u2 , ul D u2 , etc. are similar.

Case: u, is of the rorin Ou. We assume that ir- v, v 2 , then I- u u'. By the 0O-rule,
F O u - Ou', i.e., F w - '.
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Thecases CS iti which iv' is or forms 0 ua, 0 u, and 'it Uu2) arc treated si oi larly, uisi ng the 0 0

rule, the 0 0-rule, and the UU-rule, respectively.

Case: w is of the form Vx.u. We aSSUmre that if 1 - VI -V 2 , then F- u u'. Then by the WV-rule,S
F- Vx.u = Vx u', i e., F- wv = w'.

The case where ?v is of form 3x.u is proved simnilarly by the ]3-riile.

JS

Deduction Rule - 1EI

Wt W 2

F (DWI) W2

j where the VI rule (Rule R4) is never applied1 to a free variable
oftw1 in the dlerivation of w, F- W 2 .

That is, if unuer the assumption w, we can (derive F- 'ti'2 , wherc rule RI1 is never applied to a free
* variable of w1 , then there exists a proof establishing F (OWI) D W2. We clearly must also be

careful in using any theorem or derived rule such as the VV or ER rule that was establishcd using
* the VI rule.

T1he adIdition.-1 D operator in the conclusion is obviously necessary since in general w, F W2

does not imply F w, D W2. For examnple, ob~viously w F Ow is true (an immediate application of
rule 113 F w by assu mption and therefore F O w by 01); but w D 0 w is not a theorem.

Proof-

* The proof of the temporal D)eduction Rule follows the same argumrents used in the proof of
the classical dleduction theorem of 1're(]icate Calculus. Bly the given wi F W2 , there exists a proof

* of the formn:

F ut
FU2

Fm

such that ul =w, is the hypothesis on which the proof relies, and] urn W2 is the conseqtuence of
the proof. We replace each li ne F 7ti ini the proof' of' wv F- W2 Iby the Ii ne F- Ow D~ ui, and show

* ~that thiis transformiation preserves soi1 undess. Tlhat is

given show

Fu, F (DWI) i ul
I- U2 I-(DWI) D U
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I- I (o - -u

F U"' 1-(Ow) U"
i.e., l- W2 i.e.l- (Owl) D W2

where each ui is either the assumption wl, an axiom, or derived from previous u3 's by some rule
of inference.

The proof is by a complete induction on i. We assume that for all k < i, I- (Owl) uk,

and prove that I- (Owl) ui.

Case: ui is an axiom.

1. I-uI~ axiom

2. l-(0w,) i ui by PR

Note that I- w' implies I- w D w' for any w, by propositional reasoning.

Case: ui is wI.

1. I- (Owl) : w, by A3

Case: ui is obtained by rule RI, i.e., ui is an instance of a tautology.

1. Fui by PT

2. - (0Ow1) D li by PR

Case: ui is obtained by rule 112 (using previous F uk and F uk D ui).

1. F (Owl) D Uk induction hypothesis

2. I-(Owl) D (u, D Ili) induction hypothesis

3. F (Owl) D ui by 1,2 and PR

Case: ui is obtained by rule R3 (using previous F uIk), i.e., ui is Ouk.

1. - (Owl) D uA, induction hypothesis

2. - (-wl) D Ouk by [I

3. - (Owl) D 00wl by T3 and IPll

4. - (Owl) D Ouk by 2, 3 anud IPR
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Case: u, is obtained by rule RI4 (using previous I- u D v, i.e. Uk, to get, I- u D Vx.v, i.e. uj, where
x is not free in u).

By our deduction rule assumption, we know that x is also not free in wt.

1. I-(--wI) : (71 D v) induction hypothesis

2. I- ((0 w1) A u) D v by I'R

3. - ((Owl) A u) D w.v by RI
(since x is not free in u or inl)

4. 1-- (noW) (U D wx.v) by l)R..I

A different approach to coping with the applicatioii of the 0 insertion rule (rile I3) is Lo
forbid it altogether. We then get the following restricted deduction rule:

Restricted Deduction Rule -RID1EI)

Wt I- W2

IWt D W 2

where Ell (rule V3) is never applied and VI (rule RI) is never
applied to a free variable of wt in the derivation of w I- w 2.-

p

lere, we are not allowed to use rule -ll or any theorem or derived rule in whose proof OI was
used.

The proof of I)EI) follows exactly that of I)EI) except that the case in which rule R3 is
applied does not arise.

QUANTIFIER THEOREMS:

'r4o. - (,-vV.w) = (px. -w)

Proof:

1. w-(" -,) - w by I'T

2. " (Vx. - -w) - Vx.w by WV

3. I- (3x. - u') = Vx.w by All and 11.

4. I- -V £.w Ix. , W by I 1
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r41. F-Vz.(wl A 10 2 ) (Vx.wl A Vx.w 2)

Proof:

1. F Vz.wt wl by A12

2. F Vx.w 2  W2  by A12

3. F (Vx.wl A VX.w 2 ) D (w, A w 2) by 1, 2 and PR

4. I- (Vz.wi A Vx.w 2 ) D Vx.(wi A W2 ) by VI

5. F (w1 A W2) D wt by PT

6. F Vx.(w, A W2 ) D Vx.wl by W

7. F (wvt A W2 ) D W2  by PT

8. F Vx.(w1 A W.2 ) D VX.w 2  by W

9. F- Vx.(w, A W2 ) D (Vx.wi A VX.w2) by 6, 8 and PR

10. F Vx.(wi A W2) (V.wl A Vz.w 2 ) by 4, 9 and PR 1

r12. F3xz.(w1 V W2 ) (3x.uwI V 3x.w 2)

Proof:

1. F Vz.(-wi A -'w 2 ) - (Vx. '- w A VX.-' W2) by '1741

2. F-Vz.,-(W V w 2 ) (Vx..- w, A VX.'--W 2 ) by ER

3. F ,'3z.(w V W2 ) (-3-,x.wl A ,,z.w 2 ) by Al I and PR

4. F 3zx.(WI V W2o) (3X.w v 3z.,W2 ) b, IR

,.I

43. F Vx.(wt V w'2 ) -W[ V Vx.w2 ] where x is not tree in wt.

Proof:

. F VX-.(W, V ,, 2 ) D fW, V W2 1 by A12

2. F IVx.(w V w..,) A wgl D Wo2  by PR
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q1

3. l'- [VX.(W1 V W2) A '-Wil VX-W 2  by VI, I
since z is not free in VX.(wt V n 2) A -w]

4. l- V.(w, V Wn2 ) D [WI V VX.W21 by I'R

5. I- w, D [IW1 V w 2 1 by 'T

6. I- Vx.w 2 D W2 by A12

7. I- VX.w 2 D [W1 V w2] by PRlt

8. I- [W1 V VX.w 2] 0 [wI V w 2 1 by 5, 7 and PIT

9. - w, V Vx.w 2] 0 VX.(WI V W2) by VI,
since x is not free in w1 V VX.w 2

10. - Vx.(wi V W2 ) [w1 V Vx.w 2] by 4, 9 and PIR

Tr14. I- Bx.(wi A w2) -[w, A ].w12 where z is not free in w,

Proof: Bly duality on the previous theorem.

The following two theorems show that the 0 operator also commutes with the quantifiers.

"T45. F- (Vx. Ow) (OVx.w)

Proof:

I. F- (V.oI) 3 (owV.w) by A 13

2. F-Vx.w :D w by A12

3. -(OVz.w) 0 w by 00

4. I- (OVx.w) D (Vz.O,,,) by VI

5. - (Vx. O,) (oVx.,) by I, 4 and l'R I.I

1,46. - (1x. 0 ) (o _Ax.W)

Proof:

I. I-(Vx. 0 ,w) (OVa. - w) by '45
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2. 1 (Vz. o0w) (0 -3x.w) by A4, AI I and IR

3. F (-3z. O w) (O 3x.w) by A4, A l l and IR

4. F (AX. o W) : (0 3.W) by 'Rr

The following two theorems show that each temporal operator commutes with the quantifier "
that has similar character (universal, or existential). SI

T,17. I- (Vx.lw) (FVx.w) ]
Proof:

I. - 0 W [w A O w] by 'l'20 and IPR

2. F (Vx.0w) D Vx.(w A O w) byW

3. F (Vx.O0w) D [(V.w) A (Vx.O0w)] by T41 and PR

4. F (Vx.0w) D [(V.w) A (OVx.-IOw)] by T45 and P'R

5. - (Vx. 0 w) D (OVx.w) by DCI, taking u to be Vx. O w and v to be Vx.w

6. F (Vx.w) :) w by A12

7. F (DVx.w) : Ow by 00

8. F (OW.w) D (Vx.O0w) by VI

9. F (VX. FOw) £ (FV.w) by 5, 8 and IPR J

rl'48. F (Ax. 0 w) (0 3,.w)

Proof:

1. F(Vz.[~-'W) ([]Vz. -w) by [47

2. F (Vz. -, iti) (0 -. 3x.w) by Al, All and Ht (twice)

3. F (-7z. w) (' 3x.w) by A l, A I I a,,d iR

4. F (Ax. < w) E (0 3x.w) by 'Ri

The.orei T17 implies the conmmnutativity or V with o"1: IBol,h have a universal chiaracter, wil, h
one quantiryimig over indivhinals alnd the other quantilying over states. Similarly, theorcin '1',18
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implies the commutativity of 3 with 0. [he first two theorems (T45 and [1.6) imply the commu-
tativity or V and 3 with 0.

'he next two theorems are consistent with the interpretation that the U operator is universal
with respect to its first argument and existential with respect to the second.

T,19. F- VX.(wtUw 2) (VX.wt)Lw 2  where x is not free in w 2

Proof:

1. I wIUw 2 D [w2 V (WI A O(wIUw2)) l  by A9 and '1R

2. Vx.(wUw 2) D Vz-W2 V (v,, A O(wIUw2 ))I by W

3. F- Vx.(WryUw 2) D [W2 V Vx.(w, A O(WIUw 2 ))J by VI and PR,
since x is not free in W 2

4. FV X.( ,UIU2) D [W2 v (Vx.w, A VX.o(WIUU 2 ))] by T141 and pIT

5. F-VX.(wnUw 2) D [w2 V (Vz.wi A OVz.(wtUw 2))] by T,15 and lIT

6. F- VX.(wVIUw 2) D <>w 2  by A12, AIO and Pt

7. F- VX.(wUW 2) D (VX.wr)Uw 2  by 5, F1 and RUI,
taking wn Lo be Vx.(w Uw.), u to be Vx.w1 , and v to be ,2

8. F- (Vx.w) D wl by A12

9. F- (Vx.'IVr)Uw 2 : wrUrW2  by ILU

10. F- (VX.w,)Uw 2 D VX.(wIU, 2 ) by VI,
since x is not. trec in i12

I1. F- Vx.(wIUw 2) E (VX.wI)Uw 2  by 7, 10 arid I'T

P:

T50. F 3X.(wlUrw 2) wIU(PX.u, 2 ) where x is not free in w.

Proof:

I. -wUrw2 D <>w 2  by A 10

2. ] .(WIUW 2 ) D (3B.<OW 2 ) by 31

3. F.- Ux.(wrw2 ) D (> X-.w2) by T48 and PIT

4. F WI, U0 2 D [W2 V (,,,, A o(W,) UW2 ))l by A9 and Nt

5. F-IT.(,V Urn2) D [(ix.w )V .x.(w, A O(wr Um'12))j by r42, 1] and I'R
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6. I- .(WIUV 2) 1 (3x-W2 ) V (WI A 3xc. O(witlW2))j by TI'14and PR1,
since x is not free in w,

7. F 3x.(w,U, 2 ) z {(3X.w2 ) V [W,, A 0 3X.(WUw 2 )]} by 'r16 ari PR

8. F- 3X.(wIw,) D wIU(-X.W2 ) by 3, 7, IWI ind PIZ

9. F- [w2 V (wi A O(wIUw2))] n wIUw 2  by A9 a I Pit

10. I- 3x.[w2 V (wI A O(Vi)Uw 2))] : --].(wtUW2 ) by 33

11. I- [(]X.w 2) v 3z.(w A O(wIUw 2))l D 3x.(wUtw 2) by '',42 and I'R

12. 1- [(3X.wV) V (w,, A 3X.0(w, Uw 2 ))] 3x .(,,Uw,2 ) by 'T44 and PR,
since x is iot, free in w1

13. F- [( X.W2 ) v (w, A 0-.(wVUw2 ))] 3 ],.(w, Uw 2 ) by ''16 arid R

14. F Iwi U(]X.w 2 ) D 3x.w, Uw 2 ) by 1,U1,
taking u to be iv,, v to be Jx.wi., and w to he IX.(w I JUw2)

15. - -x.(w Ihiv,) w U( ).w2 ) by 8, 14 and PR J=I

While operators of similar character, i.e., both universal or 1)oth existential, co mmiite to yield
equivalent Formiulas, operators of opposiLe character usually admit implication in one direction
only. rhus we have:

T51. I- 3x.Ow D 03j.w

T52. F 0 Vx.w D V. Ow

'53(a). l- Ix.(wUw2) D (-X.wn)UIV where x is not free in w2

(b). -wIU(VX.w 2) D VX.('wIhw.) where x is not free in wt

Theorems of similar character are:

'I'54(a). F Ix.(,Uv) D (]x.u)U(]x.v)

(b). F (Vx.,)U(Vx.v) V w..(uUv)

THE NEXT OPERATOR APPLIED TO TERMS:

'l'he use of the next operator 0 applied to te(rms is governed by the axioms:
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A14. F- Of(ti,...,t,) f(Ot, ...,Ot,)
for any function f and terms ti, ..,t,

A15. F 0op(t 1, ...t,) - (O t1, 0..,O,)

for any predicate p and terms t1 , t,

'rhese axioms arc consistent with the evaluation rules that we gave which stated that in
order to evaluate an expression 0 E(t, ... ,t,), we can evaluate E(O ti, 0 t,) whether E is a

* Function or a predicate.

5. EQUALITY

K(jiality is handled by the following axioms:

AXIOMS:

A 16. Reflexivity of Equality

t- t=t or any term t

A17. Substitutivity of Equality

F--(ti = t2) D [W(t,,t,) =W(tl,,1)]

where t 2 is any term globally free for tj in w
and where w does not contain temporal operators

Al8. F O(t I = t2) (Ot= 0t2)

We use w(t 1, t 2) to indicate that t2 replaces some of the occurrences of t in w.

The axiom A18 is a special case or A15 when the predicate p is the equality predicate.

Recall that a term t2 is said to be globally free for t1 in w if substitution o1' t2 for all free

ocurrences ofr tt in w: (a) does not create new bound occurrences of (global) variabhle, (i.e., t2 is

fret for t1 in w), and (b) does not create new occurrences or local variables in the scope of a modal
operator.

Note that the classical axiom for substitulivi~y or equality A 17

1- (t, = t2 ) D [w(ti,ti) = w(t,,t2)]

(where t2 is free for t, in w) is not correct iF w contains temporal operators. We could take w(t,,t2)

to be 0(11 = t2) and deduce from A17

- (ti = 12) ( {0(t, = t,) 0(t, = t)],
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I.e.,

l'- (i = t2) 0 (ti t2),

which is not a valid statement (since it = t2 may contain local variables).

T55. Commutativity of Equality

(t (I = t2) D (t2 = t )

Proof:

I. -*I-(ti t2) D [(ti = t) (t 2 "--t,)] by A17

2. I- t =t" by A16
3. I-(t 1 -t 2 ) i (t 2 =t) by 1, 2 and I'R_

T56. Transitivity of Equality

F [(t= t2) A (t2 t 3 )] D (t = t3)

Proof:

1. F (tt =t2) D [(t -t 3) (t2 = t3)] by A17

2. F [(t, = t2 ) A (t 2 = t3 )] (t, = t) by 'RJ

'57. Term Equality

(a) I (t, = t2) D Lr(tI t,) "(tIt 2)] ror any ternl T

(b) - (t1 = t2) ~ [r(t,tt) = r(t ,t 2)]
provide(d r does not contain the next operator.

Proof of (a):

By induction on the structure of T.

Case: r(ti,tit) = tt and T(tt,t2) - tl. Then

1. i tt lt by A16

2. F- l0(t! t2) [(tt ): (t!,t2)]

by Plil and definition ol T(tj,!) ald r(ti,t2)
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*0Case: r(ti,ti) = t1 and r(ti,t, ) = t2. TPheri

1. I- fl(t1 =t2) (t1 =t 2 ) by A3

2. F D(tI = t2) D [T(tI,t) T(t,,t2)]

by the definition or -(t,, t,) and T(t,, t2)

Case: 7(tl,tl) - f(TI(ti,tt), ... ,Tk(tht,)) and T(t, t2) f(T (tIt2), . ,Tk(tl,t2)). Then

1. - D(t, = t2) D [,(ti,ti) = ,(tl,t2), for i= , ... ,k
by the induction assumption.

k
2. 1-i7(tt' t') 7i(tt, t2)1 D

[f (T(t , t, , .. , k (tIt,) I -- f( T(t,,t 2 , . ,Tk (t I,tN )

by repeated application of A 17 and using T56 [or transitivity or equality.

A typical step in this repeated application is:

F [I(t,,t,) = T(,12)] -

[f ( T(t,,t2), .. , 7,i (t,,t), T,(th t,), .. , k(t,,t,))

f(7t(ttt~b), ... , T I(t,,t2), Ti(tl,t2), Ti+I(t t,l), ... (t, t))]

justifled by A17 and the tact that, 7-(t,, t2) is ree [or -ri(ti, t,) in f(...) since f does riot contain any
temporal operators.

3. F D(t = t2) D [(t,,t,) T(tI,t 2 )]

by I, 2, I'1 and the definition or T(ti,ti) and T(t,t2).

Case: 7(t,,ti) =OT'(t,,t) and r(t,t 2 ) =OT'(tl,t2). Then

I. F O(tI = t2) : [T'(t ,t )= r'(t I,t2)] by the induction hypothesis

2. F O-(ti = t2) D O[7'(tl,ti) = T'(tt,t2)] by 00

3. F O[7'(t.,ti) - '(tj,t 2 )] D [OT'(tj,ti) = OT'(tI,t 2)] by A18 and PR

4. -- O(tI = t2) O(t I=t2) by A7

5. - C(t, = t2) D (0T'(tI,,t) = 0T'(tI,t2)) by 4, 2, 3 and PR

6. - 0(t I = t2) D ( , ,) = T(t ,t2)] by the delinition, or T(ti, ti), T(t,t2).

Proof of (b):

1. F (t, = t2) D [(r(t-) = 1(t2)) - (T(t2) = T(t2))] by A17 (no 0 in T)

2. F 1(t-2)= T(t 2 ) by A16
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3. I- (tI t2 ) (r(ti) =r(t 2 )) byl1, 2andlNZ

The following theoremn generalizes Al7 to arbitra-ry formulas.

TL58. Subs titutivity of Equality'

I- O(tI t2) D [W(tbt 1 ) W(t1 , t2 )] where t2 is free for t, in w.

Proof.

By induction on the structure of wn.

Case: wv contains no temporal operators. Then

1. - (t1  t2 ) D[w(ti, tj) w(tI, t2)] by A17

2. F O(t = t 2 ) D (tt1 = t2 ) by A3

3. I- 0(ti = t2) D fW(ti, tI) W(tht 2 )] by MP

Case: 00a~2 ) is of the form Ti(t,,t 2) = 2(ti,t2 ). Then

1. I- O(t1  t2 ) D [TI (t1, t 1) ==.1(tt, t2)) by Tl57

2. I- O(tl t2 ) D [r 2(ti, tI) rT2(tn, t 2)) by T57

by At7 or the rrm (01 = 02) D [(0, = 2 (tn , ti (02 2tlt
With, 01 = TI-(t,,t,) and~ 02 = Itt2

4. I- O(t 1  t2 ) D [('r,(t ,,t,) =T2(tr , t, (T (ti, t 2) = T(lt
by 1, 3 arid NZ

5. F- O(tI t2) D [(Tr,(tj,,t2) = 2 (t,,tI) (TI (ti,t2 ) = T2 (tl, t 2 ))]
similarly by A17, using 2

lby 41, 5 arid NZl

.47. F- O(ti = t2) D [W(thtl) W(t 1 , t2 )] by the definition or in(t, , t 2)

Case: w is or the form 0Ou. Then

q*I- I- O(t I = t2) D [U(tI , t I U (t 1, t2 )] induction hypothesis

2. I- O(tt t2 ) ass umnptioni
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3. I-u(tI,t,) u(tI,t 2 ) by MIP

4. I- u(t,,t,) 0u(tht 2 ) by 00

Thus, 0-(tI = t2) F [0u(t1,t1) = Du(tht 2 )]

5. I-C 0(t- t2) [-u(t,,t,) O u(t,t.2 )) by Il)E

6. I- 0(t, = t 2 ) D [0u(tl, ti) 0 u(t, t2)] by n1'3 and ' R

The cases in which w is of the form 0 u, 0 u, Vx.u and ]x.u are treated similarly, using the
0 0-rule, the 0 0-rule, the W-rule and the ]-rule, respectively.

Case: w is of the form uUv.

1. I- 0(ti = t 2) [u(tit 1) u(t , t2)] induction hypothesis

2. l- r(tl = t 2 ) D [v(tt,t 1 ) v(t , t 2)] induction hypothesis

3. - 0(tl - t 2) assumption

4. F- u(t,,ti) u(t1,t 2 ) by 1, 3 and MI'

5. F v(tti) E v(t 1 ,t 2 ) by 2, 3 and MP

6. F (u(ti,ti)Uv(t,t)) = (u(ti,t 2 )Uv(tt,t 2 )) by 4, 5 and ElR

Thu1s, 0(ti = t2 ) - [((ti,tj)Uv(ti,ti)) (u(tht 2)Uv(t,t 2))j

7. F 00(tt = t2) D [(u(ti,ti)Uv(t,t)) - (u(ti,t2 )Uv(tt,t 2 ))] by DED

8. F O(t= t2) (u(t,,ti)Uv(ti,tt)) (u(ti,t 2 )UV(tm,t 2))I
by T3 and PIZ

6. FRAME AXIOMS AND RULES

In this section we consider the consequences or the partition of the set of all variables into
local and global variables. By the semantic definiLion, global variables are given their value by the
global assigninent a, and these values do not vary from state to state. Consequently, for a global
variable u it rIust be universally true that. u = Ou, i.e., the value of u at any state is identical
to its value in the next state (see Al9 below). The following axioms are called frame axioms in
reference to the "frame axiomi" in H oare's deductive systei for program verilication ([11]).

Recall that we split the set of our symlbols into two subsets: global and local symbols. The
logical consequence of' this convention is the following frame axiom:

A19. Frame Axiom

F x = 0 x for every global varial)e x
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We can therefore prove by induction on the structure of the tern t and the formula w the
following frame theorems:

r59. For a term t and formula w 0

(a) I-t=Ot
where t is global, i.e., does not contain local symbols

(b) Fw = Ow
where w is global, i.e., does not contain local symbols. 0

(c) I- W(Oy,,...,Oy.) Ow(y,, ...,y.)
where yl, ... , y, are all the local variables in w.

We present several frame theorems that facilitate moving global formulas in and out of the S
scope of temporal operators.

T60. F 0(Wl V W2) ( , V OW2)
where wl is global, i.e., contains no local symbols.

Proof:

1. - -'wt D 0'--w 1  by T59b

2. 1- !D(w, V W2) A '-wj) D 0((wVl V w2) A -wj) by T7 and PR

3. F [(wnt V W 2) A -'ivl] D W 2  by PT

4. F [-(wl V W2) A 0-3wl] D Ow 2  by 2, 3, 00 and PIR

5. I- [l(w, V W2) A -wl] D Ow2 by 1, 4 and PR

6. F O(ul V w2) D (w, V Ow 2 ) by IR

7. FIwl D Owl by T59b

8. F (wl V Dw2) D (0wl V Ow 2 ) by PR

9. F-(Owl V Ow 2) D r(wl V W 2) by T9

10. F' (wV Ow 2 ) D f(wt V W2) by 8,9 and PR

I. F 0(w 1 V W2) - (Wl V Ow 2 ) by 6, 10 and PR

T61. F <)(w, A W2) (wi A iW2) where wl is global.J.

Proof: The proof follows from T60 by duality.
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A derived frame rule that we will he using is

Frame Rule -- FR

I-u D Ov

- (w A u) D O(w A v)
where w is global

Proof:

1. I-u ) Ov given

2. l-(w A u) D (w A 0v) by 1R

3. I- (w A 0 v) D 0(w A v) by T61 and PR

4. -(w A u) D O(w A v) by 2,3 and PR 1
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C. DOMAIN PART

The next part of the system contains domain axioms that specify the necessary properties
of the dornain of interest. Thus, to reason about prograuns manipulating natural numbers, we
need the set or Peano Axioms, and to reason about trees we need a set of axioms giving the basic
properties of trees and the basic operations defined on them.

7. INDUCTION AXIOMS AND RULES

An essential axiom schema for many domains is the induction axiom schema. This (and
all other schemas) should be formulated to admit temporal instances as subformulas. Thus the
induction principle for natural numbers can be stated as follows:

A20. Induction Axiom

- {?(O) A Vn[/?(,) D R(n + I)]} R 1(k)
for any statement R.

One instance of this axiom, which will be used later, is obtained by taking R(n) to be fl(Q(n) D

T62. Induction Theorem:

- {0 (Q(0) D 0V)) A V-[EI(Q(n) 0 V¢) D O(Q(n+ l) V I

D o(Q(k) D0V).

Using this induction theorem we can derive the following useful induction rule:

0 Induction Rule -. OIND

I-Q(O) D 00

I-Q(n+ 1) D [O¢i V OQ(n)

F-Q(k) D V

OINI) is useful for proving convergence of a loop: show that Q(O) guarantees 0 t' and that for
each n, either Q(n + 1) implies Q(n) across the loop or it already establishes 0 4, and no further

execution is necessary. Then for any k, Q(k) ensures that 0 ) is established.

Proof:

I. I- Q(O) D O0 given

2. - D(Q(O) 0 o ) by 1n
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3. -Q(n + 1) D ( v >Q(n)) given

4. F 0(Q(n) D V,4) i (0 Q(n) D C 4) by T6, 'r4 and PiR

5. I- [Q(n + 1) A 0(Q(n) D 0) ) I D 4; by 3, 4 and Pit

6. - 0(Q(n) D >,) D (Q(n + 1) : <>,i) by PR

7. I- 00(Q(n) - >0) D 0-(Q(n+ t) D >0) by 00

8. i- 0(Q(n) D 0,0) D 0(Q(n+ l) D 0 V,) by T3 and Pit

0. F- Vnin(Q(n) D 0 4') D I(Q(n + 1) D 0 01)] by VI

10. F- 0E(Q(k) D 0b) by 2, 9 and '62

11. l- Q(k) D 0 ' by A3 and MP'

While induction over the natural numbers is usually sufficient in order to prove properties
or sequential programs, we need induction over more general orderings in order to reason about
concurrent programs ([LPS]). Thus we have to Formulate a more general induction principle over
arbitrary well-rounded orderings.

Let (A,-<) be a partially ordered set. We call Lhe ordering - a well-founded ordering if there
exists no infinitely decreasing sequence o1 elements in A:

a I >- a 2 >- o13 >-

* For each well-rounded ordering (A, -<), the following is a valid induction rule:

R5. Well-Founded Induction Rule WIND

F- V3[( -< ) w(fl] D w(a)

F- w(a)

* This rule should hold for an arbitrary temporal fornitila w(a) dependent on a global variable

a C A, and we adopt it as a primitive inference rule.

To justify the rule semantically we may argue as follows:

Assume that the premise to the rule is true but the conclusion is not. Then there must exist
a model 9 an(l an a, such that w(a Q) is alse under M. lly the premise there must exist some a2

such that a2 < "Ia and7 w(" 2 ) is l'alse under M,\. Arguing in a similar way we obtain an inlinitely

decreasing sequence:

a I >- a 2 >- a 3 > ...

such that for each i, w(aj) ;s false under M,. This oF course contradicts the well foundedness oF
(A, -4

Note that the induction axiom and rules can be derived rom WIND by taking (A, <) to be
(N, <).
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In order to use the WINI) rule, one has to establish that the orde'ring is iih'ed a w.l-l-foundd
ordering. Several specific orderings are known to be well-lounded (such as lexicoraphic orderinig
over Luples of integers, niultisets, etc.), an( may lbe freely used. I lowevcr IOh gcueral statement

that an ordering '-<' is welI-rounded is a second order statement which may require second or(ler S
reasoning for its establishment.

ly substitution or a special form of a temporal formula we can obtain thre following inductLion

principle for 0 formulas:

Well-Founded < Induction Rule OWINi)

I- w(a) D <>(¢ V A1/[(/i -< a) A w(1)

F-? ((k) D V

We show that OWINI) follows from WIND.

Proof:

I. F W(o) D 0(0 V Afl[(i3 -< ,k) A ,v(f3)1) given

2. F w(a) D (0 V) v 0 ]P[(13 < ,) A w,(/)]) by 'T8 arid IPR

3. - o(3j3[(O a) A w(If)l D OV-) D

(0> [(/3 -< a) A w(13)] D 0 4') by T6, "T4 and IR

4. A {C() -( a3[ ) A w(/)] D 00)} D 0 ) by 2, 3 and PR

5. 0 1(1[(o -< a) /\ m 4'l ) D (w(a) D 0 V)) by PR

6. F(3I[(p < a) A w(/I)I D 0 7p) E(-30l[(/3 (t) A w(,o)] V 0 ' by PT,

7. F 7(([(fl V) w(O) v ) ) (vO[~(- V "-(/i)] v 00)
by A ll, HR and IP

8. F (V/j[( -< t) V ,(/)l V < 0) - v[(-< a) D (.;(f3) : 0 V)]
by T,13, lNt and 'iR, since 0 0 does iot depend on

9. F (11l[(P3 a) A w(/3)] D 0 7) O v[(03 -< t) D (w(13) D V))
by 6, 7, 8 and PR

10. F OV3[(O -<a) D (w(/) D ) D (w(x) D by 9, 5 and ERl

11. F. VO[(o -<a) D (7,(/) D 0,0)1 D 0(w() D 0iV) by T3, 0EIJand PR

12. - V/3 (O -< at) - (v(fl) D 0 p)1 Dt(,,,(a) D <>¢) by Tr47 and IR

13. F VI(O-< a) D (w(fl) D o¢)] D(w (t) o¢) p
by T60, KR and PIR, sinee (3 t) is global

14. F 0 (w(t) D C.4) by WIND, taking wl(o) to be F(,(a) 0 0 4,)

15. F w(a) b 0¢ by A3 and Pit
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D. PROGRAM PART

Our proof system mnust be augmented by additional axioms that rellect the struchture (, the
program under consideration. The additional axioms constrain the state sequences to be exactly
the set of execution seqjuences of' the program under study. This relieves us fromn the neced to
include program text explicitly in the system; all the necessary information is captured by the
additional axioms.

8. PROGRAMS AND COMPUTATIONS

In our model a concurrent program consists of' m parallel processes:

P : f := g(1); [PIl ... 1IImJ.

lFach process 1', is represented as a transition graph with locations (nodes) Li = {f , , e

'rhe edges in the graph are labelled by guarded commands or the form c(V) -, := f(T)] whose
,,,anrig is that if c(W) is true the edge may be traversed while replacing Y by f( ).

Let t, , ., k C Li be locations in process Pi:

C, - A : ,(Y)l/S

Ck,(V) [Y : fk(V)l

akp

The variables (. , y,,) are shared by all processes. We (efine Ht(j) = ( (:j)V ... v
'(y) to be the ezit condition al, node t. We do not require that the conditions ci be either ,xclusive

or exhaustive.

The advantage or the transition graph representation is that programs are representv( in a
uniform way and that we have only to deal with one type of instruction. We show first that
prograrvs represented in a linear text form can easily be translated into graph form.

Assume that a linear text program allows the 'ollowing types of instructions:

Asignment: y := f(.)
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Conditional Branch: if p(yj) then go to I, else go to 12

Halt: halt

Waiting loop: loop until p(Yi)

loop while p(q)

and the semaphore instructions

Request: request(y)

Release: release(y)

A linear text program for e..ch of the processes has the following form:

to: 10
Lt: It

It : halt or go to 4j
where to, L, ... t are labels and 1o, [1, . are instructions from the list above.

The graph representation of such a program for process I' will be a labelled graph with
Li = {to, ... ,It} as the set of nodes. For each instruction I at label I ELi we construct edges as
follows: i

Sor the instruction
1: ff:=f(i)

construct
~~true - [* :=f()

• for the instruction
I: if p(y) then go to t' else go to t"
1' :

construct
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for the inistruiction
t : if p(yj) then go to t'
it

construct

I- for the instruction I'I
Sp(Y ) [y [J

Sfor the instruction
t: loop until p(y)
I'

coiistruct

Sfor the inistruction
t loop w hilc p(ij)

construct

PM ')- I

0, for the inistruction
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: request(y)

construct > O-- [Y:=Y-I]

• for the instruction
I : release(y)

construct

For halt at label t we construct no edges out of t.

The actual translation into graph form need not be carried out explicitly. Rather, the general
axiomatic description of' transition diagrams can be easily translated to axioms for each of the
types of instructions in the linear text form.

A state of the program P is a tuple of the form s = (t;) with t E x ... x Lm and
E D', where D is the domain over which the program variables yl, ..- ,y,, range. The vector

S(, . . .,t') is the set of current locations which are next to be executed in each of the
processes. The vector j7 is the set of current values assumed by the program variables Vj at state s.

Let s = ( 1, ... ,i, . t.,t; i) be a state. We say that process 1'P is enabled on s if Et (i) =

true. This implies that if we let P run at this point, there is at least one condition c. among the
edges departing from t' that is true. Otherwise, we say that Pi is disabled on s. An example of a
disabled process is the case where t' labels an instruclion requcst(y) and y = 0. Another example
is that of ti labeling a halt statement. A state is defir.ed to be terminal if no P. is enabled on it.

Given a program P we deine the notion of a computation step of P.

Let s = (tl , 
... ,; i) and i = (i', ... ,m; ) be two states of P. Let T be a transition in

Pi of the form:

such that c(#) = true, = f(f), and for every j €. i, f" = j. Then we say that i can be
obtained from s by a P1 -step (a single computation step), and write

An initialized admissible computation of a program P for an input Y - is a labelled maximal

sequence of states of P:

or 80 )-81 ) 82 > 33
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which satisfies the following three conditions. ( [ie sequence o is considered maximal if it cannot
be extended, i.e., it is either infinite or ends with a state Sk which is tertinial.)

A. Initialization:

The first state so has the form:

= (to;

where to ,..., .'") is the vector of initial locations. The values y(f) are the initial
values assigned to the variables for the input .

B. State to State Sequencing:

Every step in the computation s -- i, is justified by a Pi-step.

C. Fairness:

Every IA which is enabled on infinitely many states in a must be activated infinitely many
times in a, i.e., there must be an infinite number of P-steps in a.

We define an admissible computation of P for input to be either an initialized admissible
computation or a suffix or an initialized admissi')ie computation.

Thus the class of admissible computations is closed under the operation of taking the suffix.
This is needed in order to ensure soundness of' the inference rule r-!! We denote thle class of
all -adhnissible computations of a program I' by A(P, ).

An admissible computation is said to be convergent if it is finite:

1  Pi
o: -0  - 81 - ... - -- ,

If the terminal state s f in a convergent computation is of the form sf = (4, ... , t

where each t labels a halt instruction, we say that the computation has terminated. Otherwise,
we say that the computation has blocked or is deadlocked.

In order to describe properties of states we introduce a vector of location variables
If (7r, .. , r). Each 7ri ranges over Li, and assumes the location value t' in a state

I = , .

Thus we may describe a state s = (i;#) by saying that in this state f - t and Y = 7.

A state formula Q = Q(F; g) is any formula which contains no temporal operators. It is built

up of terns and prelicates over the location and program variables (T; Y) and may also refer to

global variables.

We rrequently abbreviate tile statement 7ri = t to att. Since the Li's are disjoint, there is no
dilliculty in identifying the particular 7ri which assumes the value t.
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Let us consider a program P over a domain D with fixed interpretation I for all the predicate,
function and individual constant symbols. A model M is said to be admissible for P if it has the
form:

M = (I,a, )

where a and & satisfy the following condition:

There exists an a[T]-admissible computation a E A(P,a[YI) such that

either

Pi Pi2or is infinite: o, = so- sl s2 s ...

and

P 80, 81, 82, ...

or

or is finite: a = so !PSI -) 82 Sf ... - s

and then

SO = 51 321 ... )2 Sf, 8 .

Thus we force &- to be always infinite by indefinitely repeating the last state of a if it is finite. This

corresponds to our intuition that while the computation may have terminated, time still marches
on, but no furl her change in the program will ever occur.

Let us denote the class of all admissible models for a program P by C(P). Note that this
class, differently from A(P, ), contains computations corresponding to different inputs.

We define the state formula stating that a process Pi is enabled as follows:

Enabled(P Y; j) A [ir- ("

tEE,

For the complete program P we defined

Enabled(I"; W; 2) - V Enablcd( P1; i; ij).
i=1

Thus a state s - (f; ) is terminal iff

Enablcd(I;'; ij) = false

and we may define

Tertninal(W; -V) _ Enablcd( I'; ; 2).
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Let the following be a transition r in process Pi:

c(V) Iy: I

We define the transformation associated with the transition r by:

rT( ;y) - e/, fY)

The transformation is obtained by replacing the current value I of 7ri by t' and the values of by
f(9).

Let V(F; V) and 0(f; p) be two state formulas. We say:

The transition 7 leads from o to k if the following implication is valid:

[ ( ;p) A att A c(g)] D

* The process Pi leads from 'p to v) if every transition r in Pi leads from Vp to 0.

* The program P leads from V to k if every Pi leads from Vp to 4).

We are ready now to give a temporal axiomatization for the notion of computation under the
program P.

9. AXIOMS AND RULES FOR CONCURRENT PROGRAMS

The first axioni states that the location variable 7ri may only assume values in ti.

A21. Location Axiom .... LOG

7r- C Li for i ---- 1, . .

This is an abbreviation for:

l -( 7r, = t6 ) V ( 717 = IPI) V .. .V ( 7r, = t ').t

Since all the locations are disjoint, it also follows from the equality axioms that wi may be equal
to at most one i. at a time.

For each of' the three requirements defining an admissible computation we have a corresponding
inference rule scheme:

R6. Initialization -- INIT

For an arbitrary temporal formula w:

- [atio A P g(Y)] D Ow
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For let us assume that the premise to this rule holds. This implies that Ow is true for all
-" .. initialized computations. By the semantic definition of 0, this implies that to is true for every

sufiix of an initialized computation, i.e., for every admissible computation. Thus, w is C(P)-valid,
and by generalization (1) so is Ow.

R7. Transition TRNS

Let P( ; V) and ¢( ; y) be two state formulas.

I- P leads from 'p to 4k
I- [V(T;y) A Terrnina(j;j)] D O(T; )

l-'p J 04'

In(eed let s be a state in the sequence & corresponding to an admissible computation a, and
let s' be its successor in &. Assume that Vp(s) is true. There are two cases to be considered. In
the lirst case, s' is derived from s by a Pi-step for some i = 1, . . . , it. But then, by the first
premise, 1. leads from p to 4k and therefore 0 must be true for s'. In the other case, s is terminal
and s' = s the repetition of the terminal state of a finite computation. But then s is terminal
and satisfies the antecedent of the second premise, leading to 7P(s) = V'(s') = true. Ilence, in both
cases 71(s') must hold and the conclusion of the rule follows.

Note that the first premise to this rule requires establishing many conditions involving the
individual transitions of each of the processes. However, by examining the definitions of "leading
from 'p to 0" we see that they are all expressible as classical statements involving no temporal
operators. Therefore this premise should be provable from the domain axioms plus the usual
predicate calculus proof system. The second premise is also classical, and ensures the consequence
after the sequence has reached a terminal state.

R8. Fairness -- I-AIR

Let P(Y;V) and 7P(T;y) be two state formulas and PA be
one of the processes.

A. F- P leads from ptoo V

B. I-F- Pk leads from 'p to 4'

I- ['p A 0 0 Enablcd(Pk)] D pU4

To give a semantic justification of this rule, consider a computation such that 'p is true initially.
By A, ' will hold until 4 is realized, if ever. By 13, once Pk will be activated in a state satisfying
'p it will achieve V' in one step. Consider now a sequence a such that. ' A 0 0 ,bfnabcd(Pk) is
true on a. This means that ' is initially true an rid ',k is enabl(l infinitely many times in a. Ily
fairness, Pk will eventually be activated, which, if 4' has not been realized before, will achieve 4'
in one step.

Since (VUO4') J 07k, we often use the FAIR rule in order to derive the consequence

I A 02 Enab1cd(',k)] D 00.

There are several derived rules that can be obtained from the above axiomatization.
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Invariance Rule INV

F P leads f'rom V to V

F-' Do O(

Proof:

I. F P leads from Vo to (p given

2 I- [V A Terminal] V by PT 0

3. FV D0O o by TRNS

4. FV- D by CI
_J

Initia.ized Invariance Rule -- IINV

Let V be a state formula

F [atio A ~ig()1 D (p

I- P leads From V to W

Proof;

I. F- atfo A j=y(Y)l D p given

2. F- P leads from Vp to Vp given

3. 1- V D Op by 2 and INV

4. F- [ato A ijg(Y)] D V'p by 1,3 and Pit

5. F- Op by INIT

The IINV rule is the rule most often used in order to establish invariance properties of programs.

Unless Establishment Rule --- 11EI

Let (p be a state formula

F- P leads from 'p to 'p V 4'

F 'p D ((pU4,A

Proof:

I. F P leads frori 'p to 'p V given
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2. Fp ('p V 4) by PT

3. 1- [V A Terninall D (w V 4) by PR

4. - v D O('p V 4) by 1, 3 and TRNS

5. I-p V (V iI4) by iI

The following rule is a consequence of the FAIR rule.

Eventuality Rule EVNT

Let ',(T; ) and O(-; V) be two state formulas and Pk one or
the processes.

A. F P leads from Vp to Vp V 4

1. 1- Pk leads from Vp to 4
C. I- 0(0 V PEnablcd(Pk))

Proof:

1. I- I' leads from p to (p V4 given

2. 1 Pk leads from 'p to ' given

3. F 'p D 0(4' V Enablcd(l'k)) given

4. I ['p A 0 0 Enabled(Pk)j Z 'pU4 by 1, 2 and FAIR

5. F V ('p 4 4O) by I and CINV

6. F ['p A I-0j O 0 Enabled(['k) by 3, T8, Al and IR

7. I -(o A 0's'4') D 0[ Enablcd()k) by 00

8. - [O A 0"-0] D i OEnabled(t'k) by T3, '7 and PIR

9. F [Vp A .-0 Enblcd('k)j D O¢ by Al and Pit

10. 1,o'_-30 by 4, 9, A3, AO and R

11. F ' DVoU .' by 10, "T2 and PZ

12. F V D3 ', by 5, 1I and I R _ J

In contrast. with earlier rules, i)remis, C or IVNT is not purely classical since it contains the
temporal operator 0. Since C has a form !hniilar to the conclision of' the I'VNT rule, it is to be

expected that its derivation will rmquire once more the application of' the lVNT rule. This seems
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to imply circular reasoning. Ilowever, note that at each nested application or the I,'VNT rule,
another Ijk is taken out of consideration. This is because in trying to establish 0 I'nablcd(I'k) we

need not consider any Ilk-steps at all, since when they are possible, 1'k is already enabled.

A useful special case of C that frequently suffices for the application or the EVNTI rule is:

C': I c i [F k V E,abled(P'k)l.

Note that the EVNT rule can also be used to establish properties of the form

since 41J.O 0 '.

The EVNT rule is the one most often used in order to establish both eventuality (liveness)
properties and precedence properties.

1HI
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E. EXAMPLES

In this section we present several examples~ of proof9 of properties of programs using the proof
systemn described above.

10. EXAMPLE 1: DISTRIBUTED GCD

Let us consider the following example of a program compuiting the greatest common dlivisor
of' two positive integers in a dlistributed manner.

(Y 1, Y2) (X ( 1 , X2 )

e0:if Y1 > 112 then YI:=YI-Y2 MO:if Y1 < Y2 then Y2:=Y2-Yi

~Iif Y1t-Y2 then goo to0  M1:if Y11Y 2 then goto in0

t2: halt M2 halt

We wish to prove total correctness for this program, i.e.,

Theorem:

I[at(fo, mo) A (YL, Y2) (T ( 1 , X2 )] O [at(t 2, "1) A yi gcl(xi, X2 ))

We will split the proof into two parts, proving separately invariance and termination.

Lemma A:

F O[gcd(y 1, Y/2) =ged(x 1, X2)I

Proof of Lemma A:

r Let us denote gcd(yi,Y 2) CdI(XI,X 2 ) by (Xh X29 Y1 Y 2 ).

It is easy to check that every transition in 11 leads fromn to ~.Also

FI- (YI,Y2) =(X[,X 2)] '(XihX 2,y 1, 2).
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Thus we have the two premises to the IINV rule, which yields the (desired result.
J

Lemma B:

- [at fo,i A atm0 ,1 A (Y[,Y2) > 0 A ('Y + Y2) < n + t) A YI 0 Y21

D O[atto,, A atmoi, A (Y, 2) > 0 A (Yi + Y2 < n)]

llere we use atto,1  as an abbreviation for ateo V att, atmo, I for atmo V atm, and

(Y9, 2) > 0 for (y, > 0)A (Y2 >0).

Proof of Lemma B:

*Let us define

P(y 1, Y2, n) :ateo, 1 A atmo,1 A (yt,Y2)> 0 A (y +Y2 n).

Thus we have to prove:

[V(Y1,,Y 2 ,n + 1) A (Y t Y2)] V <>(y1,Y2,n).

We will split the proor into two cases:

Il. I- P[(Y,,y2,n + I) A (Y, > Y2)] O <>p(y1,y2,n)

B2. [VY,(,,Y 2,,n+ ) A (y, < Y2)] ZO((y,,Y2,n)

The lenma obviously follows rrom these two statements.

* To prove 1I we first observe that by P:

1. I- (y,y 2 ,n+ 1) D (atto V atel)

Consider therefore first the case that PI is at e0. We take

p ': ( 1,Y2 ,n+ I) A (YtI > 2) A atto

' : p(y,,y 2 , n).

* We claim that V' and V' satisfy the premises of EVNTI with Pk Ill.

*To see this, consider requirement A of EVNT that states that every transition in P leads from
V 'to (' V P'.

Consider transitions in P2 . The only relevant ones are mo -' Ti and transitions leading out
of rin. The transition ?io - i under y, > y2 lavs (p' invariant. Again, under yj > Y2 the
only transilion out or it, goCs to Min leaving ' invariant.
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The only transition enabled in P is to -f t which replaces (Y ,Y2) by (y V -Y2,Y2). If

Yt + Y2 n + 1 and yj > 0, Y2 > 0 then certainly (YI - Y2) + Y2 5 n and (Y1 - Y2) > ), Y2 > 0.
Thus to -t 4 leads from ' to ?P'. This also establishes re(luirement B with Pk = P.

Since Et0 = true, condition C is trivially ruffilled. Consequently we conclude by the EVNT
rule that 0 Vo ' D 4, i.e.,

2. - [V(y,y 2 ,n + 1) A (y1 > y2) A atfoj 0 V(y 1,,y 2 ,n).

Consider next the case where P is at ft. By taking

V ( 1,(y,,y2,n+ 1) A (yI > y2) A atf1

V" = 1' , Yt2,n + 1) A (Y. > Y2) A atio.

We can show that the premises of the EVNT rule are satisfied with respect to Vp", p". Consequently
we have V o" :) 0V)", i.e.,

3. F 0(Y 1, Y2 ,n + 1) A (Y I > V2) A at t ]

c[p(y,,y2 ,n + 1) A (yI > Y2) A atfo]

4. F [V(yt,Y2,n + 1) A (Y1 > Y2) A atfi] D 0O(yt,y 2 ,n) by 2,3 and OC

5. F" [P(y,y 2 ,n + 1) A (Yt > Y2)] 0 V(y, 11 2 , n) by 1, 2, 4 and PR

This establishes BI.

By a symmetric argument. we can establish 132. By propositional reasoning B1 and 12 lead to
Lemma B.

Proof of theorem:

We will now proceed with the proof or the main theorem.

6. F [P(YI, Y2, n +1) A (Y' #Y2)] D 0(YI, Y2, n) Lern ma B

S. F (Y,, 2,f ) n [(Y =Y2) V 0V(Ym,Y2,,n)] by PR

8. F o(y,y 2 ,n + 1) D [O(yt- Y2) V 0 V(y,,y 2 ,n)) by TI and PR

9. F "V(yt,y2,0) by P1R,
using the domain prol)rty Ihat the conjunc tion
(y' > 0) A (Y2 > 0) A (y, + Y2 < 0) is impossible

10. F V((y,Y2,0) D O(yt -y2) by PR

11. F (y,y 2 ,n) D c'(Yt = Y2) by 8, 10 an1  I)ND

12. F 3n.(y I,y2, n) D ( =Y Y2) by 31

13. [ at(fo,r o) A ( ,,Y2) (x:,, , 2 ) > 01 D 1?,.,1p(.J,2,n)
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by taking ?t - x, + x 2 > 0

By considering the different locations of P, and P2 under the assumption that Yi = Y2 it is

easy (though long if carried out in full detail) to establish

14. - (VI Y2) D 0[at(f2 ,,,m2 ) A (y, y2)].

By combining 12, 13 and 14 using OC we obtain:

15. - [at(fo,mo) A (YI,Y2)= (x 1 ,x )> 01 D 0[at(12 ,m 2 ) A (y1 Y2)1"

Together with lemma A and TIO this gives

16. - [at(to,mo) A (Y1,Y2)= (X,X2) > 0] D *[at(t,,m 2 ) A yt =ged(xj, X 2 )]
since (y, = Y2) D yI = gcd(y1 , Y,2)

Note that theorem TIO enables us to infer from a previously established invariant I- fl p and
an implication I- w 1  0 w 2 the implication F w, O(w 2 A t).

11. EXAMPLE 2: SEMAPHORES

SFor our next example we will present a very simple program with semaphores:

Yp

to request(y) o: requcst(y)

tj release(y) m, release(y)

2 go to e0  : go to m0

-P1- -P 2 -

This example models a solution to the mutual exclusion problem using semaphores. 9
There are two properties that we wish to prove for this program. The first is that of mutual

e cxcl usio n, namely:

Lemma A:

F [((-.atti) v ('-atmi)]

Proof:

~l'ake

(7r-I,,r;Y): (att + atr +y= ) A (y 0).
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In expressions such as the above we interpret propositions as having the numerical value I when
true and 0 otherwise.

We can easily show that V is preserved under every transition. For example, consider the p
transition to -- t. When it is enabled, we have y > 0, and the transition assigns to the variable
y the value y - I which is nonnegative. Considering the value of the sum-

att1 + atm1 + y,

at(1 changes from 0 to I on this transition but y is decremented by 1. Consequently the value of
the sum remains invariant.

Initially, atf, +atm 1 +y=0±0+I = I and y I >0.

Hence Vp satisfies the two premises of the IINV rule, from which we conclude

I: l--[ate + atm, + y =1) A (y > 0)).

This implies

I- O[atgt + atm1 < 1]

which is equivalent to Lemma A.

The second property is that of accessibility. It states that cacti process will eventually be
admitted to its critical section. This is established by:

Lemma B:

I-ato O0atgt

and

I- atmo D O atm

Proof:

Let us define

i :atto A atm1 A y= 0

¢1: y>0

We show that V, and 01 satisfy the conditions of the EVNT rule with k = 2.

In fact the only enablhd transition is mI - M2 which does lead from o to Cm While at ml,

P2 is always enabled. Thus we conclude:

!. I- [atfo A atmi A y 01 D OZ(y > 0) by EVNT with k= 2
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2. F- [atfo A atni,] D 0(y > 0) by 11 above, I and ["it

3. F fatto A atm 2,3 1 D (Y > 0) also by 11 and PR

4. Fat to iD 0(y >0) by ri, 2, 3, LOC and PiR

'Fake flow

'P2 atto
01

4':attt

We check premises A to C iii the EVNT rule with respect to the pair ('P2,0~21 taking k =1

Clearly P) always leads from 'P2 to VP2 V '02. The process P1 alwaysi leadls (when enabled) from 'P2j
to '02- Condition C is guaranteed by 4 above. We therefore conclude

5. F at to D 0 at ti.

By a completely symmetric argument we can show that:J

F atmo D 0 atnij.

12. EXLAMPLE 3: MUTUAL EXCLUSION

As a third example we consider a program that solves the mnutual exclusion problm without
semiaphores:

(Y,,Y2 ,t) :=(false,false, 1)

to: Noncritical Section tn Noncritical Section

:jY := true :n Y/2 := true

tt := I M 2 :t := 2
63 if Y2 ==false then go to t5 ?n3 :if Y1 = false then go to ms

t 4 :ift=l then go to 63 7n 4 if t 2 then go to inn3

'5: Critical Section Mn5 :Critical Section

G j:false Mn6 Y 12 :=false

17 90g to to M 7  90g to MO

For convenience we will abbreviatev formuiilas ateti to ti.
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The principle of operation of this program is that each process P' has a variable yi, i 1,2,
which expresses the process's wish to enter its critical section. The variable yt is set to true at tj
and m and reset to false at t 6 and m,, respectively. In addition, each process leaves a signature
in the common variable t. The process P, sets it to I at t2 and P2 sets it to 2 at M 2 . A process
P. may enter its critical section only if either y j = false (meaning that. the other process is not
interested) or if t = j, for j #: i. The latter case corresponds to both processes being interested
in entering the critical section but Pj being the last to pass through the signing instructions at
(t2, m 2 ).

To formally prove that this program is correct we first prove several invariance properties.

Lemma A:

I- Y - 2..6

Ihere 2..6 stands for att 2 .6. Thus the lemma states that

y= true if and only if 7r! C {t2,t3,14,f5,16}.

Proof:

To prove the Lemma we take

i: (Y1 2.6)

and show that it is invariant tinder every transition, i.e., every transition leads fron 'om to 'P1.

The only transitions that can affect the truth of p are t1 --+ t2 and t6 - .

In tj --* t2 both yi and Ot2 .6 become sirnultaneotsly true. Similarly in t - t7 both y! and
att...6 become sim ultaneously false. Thus

1. F (Y1 - ::) O(Yi 12..6) by TRNS

2. I-{at(to, mo) A [(y', Y2, t) (false, false, [)]} (yi I 2.6)
3. IO(yt- t2..o) by 1, 2 and IINV

Lemma B:

The leinna is proved by a symmnetric argumrent.

Lemma C:

- (t= 1) V (t =2)
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This lemma states that the only possible values of the variable t are I or 2.

Proof:

The Lemma is clearly provable by the IINV principle. Obviously, it is true initially since
t = 1. The only transitions that modify the value of t set it either to I or to 2. Thus P always
leads to a state satisfying (t 1 1) V (t = 2).

Lemma D:

i- t5,6 D [(-y2) V (t =2) V m2 1

011

Proof:

Let V2 stand for e5,6 D (~'2) V (t = 2) V n2].

It is clearly true initially since F to D ' 5,6. To show that every transition leads from V2 to

V2, consider the only transitions that may falsify VP2, i.e., that may possibly lead from VP2 to --P2.
[Potentially they are:

S- t5. This transition is possible only under -Y2 which makes

("-Y2) V (t = 2) V M 2

true.

t4 --+ t5. This is possible only when t I I which by Lemma C makes

('-Y2) V (t = 2) v n12

again true.

The other transitions we should consider are transitions or' P2 while P, is already at t 5,6. The
only ones to be considered are those which affect any of the variables in -Y2 V (t = 2) V rn2.

* mt -' M 2 . Causes M 2 to become true.

em2 - M 3 . Causes t to be set to 2.

* "1-- - M. Sets Y2 to false, making -Y2 true.

The heynina follows by the IUNV principle. J

Lemma E:

F Mn5,6 D[(-YI) V (t 1 ) V e2j

lhe lernrna is proved by a completely syrnmetric argunent.
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Theorem:

l- (-45,6) v (-m5, 6 )

This theorem proves the mutual exclusion of the processes.

Proof:

1. F (15,6 A M5,6) D [((-y2) V (t =2) V M 2) A ((-y1) V (t 1) V t2)]
by lemmas C, D and PR

2. 1- (5,6 A m 5,6 ) D [y, A Y2 A -t2 A -m 2 1 by lemmas A, B, LOC and PR

3. I-(15,6 A m 5,6) D [(t-1) A (t=2)] by 1,2andPR

4. I- -15,6 A M 5,6 ) by the equality axioms and PR,
using the domain fact that I t 2

5. I-4("5,6) V ("-m5 ,6 ) by PR J

Next we will prove accessibility. We will only prove:

Theorem:

I- att1 D Oat1 5

The result for P2 is completely symmetric.

Proof:

The proof will proceed by a sequence of statements most of which are proved by the IVNT rule
in the version whose conclusion is v D OV. Simple passages jusLified by propositional temporal
reasoning will not be fully presented and their omission is denoted by mentioning PTR in the
justification clause.

. F" (t4 A M 3 , 4 A t = 2) :D 0 5  by HVNT wiLh k I,
using lemma A

2. F-(13 A m 3,4 A t 2) D <O(14 A 'm3 ,4 A t =2) by EVNT wilh k = 2,
using lemmas A, 13

3. F (6 A 7n 3,4 A t = 2) D 0 t5 by 2, 1 and OC

4. F(6,,4 A M3,4 A t=2) D 0 5 by 1,3 and PR

5. I- (6,4 A ?n2 ) D 0[tt, V (6.4 A rn3 ,j A t --2)] by EVNT with k= 2
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6. F (13,4 A M 2 ) :30ls by 4, 5 and PTR

7. I- (6,4 A mI) D OV[5 V (3,4 A M2 )] by EVNT with k = 2

8. F- (3, 4 A mi) 0 t5  by 7, 6 and I-TrI

9. I- (3 A mo) D 0[t5 V (6,4 A mI)] by EVNT with k t

10. l- (6 A mo) D 0 t5  by 9, 8 and PTR

11. I- (4 A mo) D 0[15 V (3,4 A ml) V (63 A mo)] by EVNT with k= I

12. I- (4 A mo) D c1 5  by 11, 8, 10 and[ PTR

13. F- (13,4 A mo) 0 15 by 10, 12 and Pit

14. 1- (6,4 A n 7 ) D 0145 V (6,4 A ma)] by EVNT with k 2

15. F- (6,4 A M 7 ) :) 015 by 14, 13 and PTR

16. F (6,4 A n16 ) ) 0(t3,4 A ro7 ) by EVNT with k = 2 and lemma E

17. F (3,4 A M 6) D 0 t5 by 16, 15 and PTR

18. F (6,4 A M 5 ) D *(63,4 A rn6 ) by EVNT with k = 2 and lemma E

19. F (6,4 A sn5 ) 0 t5 by 18, 17 and I'TR

20. F (3,4 A M 4 A t = 1) D (3,4 A ?nS) by EVNT with k = 2 and hemma A

21. F (3,4 A M 4 A t = 1) D 0 15 by 20, 19 and ITRi

22. F(6,4 A M3 A t =1)D 0(6 3,4 A m 4 A t = 1)
by EVNT with k = 2 and lemma A

23. F (13,4 A M 3 A t = 1) D 0 t5 by 22, 21 ard ''t

24. F (3,4 A M 3 , 4 A t = 1) 0 t5  by 21, 23 and Pit

25. F (3,4 A "43,4) D 0 15 by 4, 24, lmrTnia C and Pit

We may summarize now as follows:

26. F- 6, 4  1 ,, A (rn0 V mI V m 2 V m 3 V m 4 V m5 V m 6 V n 7)]

by LOC

27. F 3,4 D t5 by 26, 13, 8, 6, 25, 19, 17, 15 and I1'TR

28. F 12 D 0 6,4 by EVNT with k-- I

29. Fl 2 : 0t5 by 27, 28 and OC

30. F t I D > t2 by ",VNT with k = I

31. F l D 0>P5 by 29, 30 ard OC
J

75



_ _ . .- . . . . . . - -. -. ..j-. . . - , . , . . .

-A

F. COMPACT PROOF PRINCIPLES

-I

In the preceding sections we introduced a comprehensive proof system for proving arbitrary
temporal properties of concurrent programs. Iowever, as demonstrated in the last examples a
fully formal proof tends to be rather lengthy and sometimes tedious to follow. Consequently we
will next discuss shorter and more r(ompact representations of proofs and corresponding compact
proof principles. All these principles can be derived in the basic proof system presented above.
Consequently, a proof according to these principles can always be mechanically expanded into a
more detailed proof using just the basic axioms. We will discuss the three main classes of properties

one may wish to prove about programs, namely: invariance, liveness and precedence properties.

13. THE INVARIANCE PRINCIPLE

The IINV principle does not significantly simplify formal proofs. Most of the needed work
in applying the IINV principle is in establishing the premise that the program P leads from P to
p. Several heuristics or rneta-rules can be suggested in order to reduce the number of transitions
that have to be checked, which in the worst case is proportional to the size of the program. For
example:

a) Only transitions that modify variables on which p depends should be checked.

b) Assume that p has the form Vp = V1 V P2 (similarly for implication), and that
some variables yl, . ,Y, appear only in 'pl. Then, in checking transitions that
only modify these variables, it is sufficient to check transitions that may falsify
' and one may assume in checking them that VP2 = false.

c) Assume that an invariance X has already been established before. Let

[ A xl D (~ate)

for some location f. Then no transitions of the form t t e' need ever be
considered in showing that P leads from 'p to 0.

A simple generalization of the IINV rule is given by:

Generalized Invariance Rule GINV
A. l-'p3 I-

13. [ at to A V = g(Y)] D V'p

C. I- P leads from p to 'p

F0 V

Certainly premies 13 and C e:1tablish O 0-'p according to IINV, from which by premise A and the
D D" rule, F- 0, 7ollows.
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The advantage of the GINV principle is that no additional temporal reasoning is required and
the rule can be proved complete by itself. By this we mean that, given a program P, any state
property VY which is invariant for all executions of P can be proven invariant by a single application
of the GINV rule and no additional temporal reasoning.

Theorem:

The GINV rule is complete for proving invariance properties.

Proof:

Let = (Y;i; Y) be a state property, possibly dependent on the input variables 7. We define
a state s - (i; ij) to be Z-accessible in P if there exists a segment of some computation initialized
with Y - that reaches s, i.e.,

- - ... -a

Define tie predicate o V(; T;) by:

; )= true (; is -accessible.

Thus, V characterizes all the states that are !-accessible. We will show that the predicate (p
so defined satisfies, together with V, all the premises required by the rule GINV.

Consider premise A. Since 4' is invariantly true in all computations of P it must be true for
every accessible state (e;ij). Consequently P

when generalized to arbitrary , t and this implies

Since we assume that the underlying domain theory is adequate for proving all classically sound
formulas this implies

F (p .

* Consider now premise 13. Since every initial state is by definition accessible we certainly have

I (Y; ?0; Oy)).

Again by completeness of our domain part with respect to classical formulas, this leads to

F [atto A y = g(()J D ,p(; T;y).

* Finally, consider premise C. Clearly every transition in P' leads from aTn ,-accessible slate to
another X-accessible state. Consequently

0 I leads from p to (p. 77
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From this prernise C follows by completeness of the domain part.

In the preceding theorem we have only shown the existence of an appropriate state predicate
(p. We have not discussed the question of the exact formal language in which such a predicate
can be expressed. Hlowever, assuming that our domain contains tihe integers or sorne isomorphic
structure, and using a first-order language, it is not difficult to show that the statement:

"There exists a finite computation of P leading from (e0; g(O)) to (V; j)"

can be G6del-encoded into a first-order statement over the integers.

14. LIVENESS PRINCIPLES

As a typical example of a detailed proof of liveness properties we may reexamine the proof of
accessibility for the mutual exclusion program (Example 3). The structure of such a proof proceeds
through a chain of events characterized by state assertions. Let the eventuality to be proved be
P D O40 where both P and 0 are state properties. We may regard V) = Vo as being the last
assertion in the chain. Then we identify an assertion V,1 such that by a single application of the
EVNT principle we can prove

l=o 3 <>¢.

In the example considered we have

': t5

I t4 A M3 ,4 A (t = 2).

Next, we identify an assertion VP2 such that by a single application of the EVNT principle we
can prove

I- V2 D 0(p, V 4').

In the general step, we identify an assertion pi such that by a single application of the EVNT
principle we can prove

<>(Vt

Finally we have to prove 'P V ( V (p) where oi, VPt, ... ,, is the chain of assertions
i=0

coi.structod. We may summarize this proof pattern by the following proof principle:
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The hain Reasoning Proof Principle ACIIN

Let vo, 't, ... , oP be a sequence or state properties satisfy-
ing the following reqluirements:

A. I P leads from 9 o Viio for i 1 r
j~i

B. For every i > 0 there exists a k = ki such that:

F Pk leads from Pi to V Pi
j<i

C. For i > 0 and k = ki as above:

F Pi D ( V vj)v lV knablcd(Pk)]

i<i @

i=O i=1

Proof:

To justify this principle we will prove by induction on n, n = 0,1, ... ,r, that

F(V j) -  V pi U vo.
i=0 i=1

For n = 0 we have F 'Po D 'P0 from which trivially follows by axiom A9

F 'Oo : (false U 'Po).

Note that we interpret an empty disjunction as false.

We assume that the statemnent above has been proved for certain n an(d we attempt to prove
it forn+ 1.

Consider the EVNT rule with 'P = 'Pn+I, 4' - (V 'pr). By premise A of CHAIN we obtain
i=O

that P leads from 'n+i = P to

( V (A = (V+, v (V 'j)) = (Vo V ,').
j<in+l j<n

This provides premise A of ,VNT. iet k = 1. Then by premise 13 of CIIAIN, I, leads

from Vo,,- = VP to ( V 'Pj) = V). Similarly, premise C of CllAIN yields that
F '<n+l

F. D O (,i, v ,,I,l,,bl (I',,)).. :
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By the EVNT rule it follows that

2. F- 'PD'PU4

or

3. FV+D

By the induction hypothcsis and the UU rule this yields 0

4. l'- ,.+, D V.+,U((Vt~o)UO).

1=1

Again by the induction hypothesis using part or A9, w 2 D wIUw 2 , we can obtain

5. F(V /j) DV+U( POV)
t=O i=1

Combining this with 4 above yields

2-: i=o l

By T38, pU(qUr) : (p V q)Ur, we can reduce the nesting depth of the U operator to get:

n+1 "+I

7. F V pi) (D V .i UV

as needed.

'raking n = r concludes the proof of the principle.

In presenting a proof according to the chain-reasoning principle it is usually sufficient to
identify cpo, vi, . .. , p, and for each i to point out the "helpful" process Pk Pk,. It call be left

to the reader to verify that premises A to C are satisfied for each i = 1,2, ... ,r.

We prefer to present such proofs in the form of a diagram. Consider a diagrarn consisting
of nodes that correspond to the assertions 'p0, Plt, ... Pr. For each transition affected by some

process ',, that leads from a state s satisfying (p, to a state s' saLisfying 'Pt, f < i, we draw an
edge from the node 'oi to the node Vt and label it by P, the name of' the responsible process.
All edges corresponding to the helpful process Pk = Pk. aret drawn as double arrows. We (1o not
explicitly draw edges corresponding to transitions from pj back to itself. lowever it is assumed
that such edges may exist for all but the helpful process for Vp.

As an example we present a diagram form or the proof of accessibility for the Mutual Exclusion
program. It is given in Fig. I. In constructing such a proof we may freely use any invarianits I

previously derived.
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In this programn, andl typically inr all no n-tcrrni natinrg programs that have no semiaphorein
structions, we do niot have to check premise C of the CHIAIN or IWNT rule. This is b~ecauise in
non- terminating programis without. scemaphores every process is continuously enaleLd and therel'ore
cond~ition C is automratically satisfied.

In contrast let us c-onsider the proof of accessibility for example 2 - a program with semaphores.
Uere we want to prove to, :D Of,. Th e mnain diagrarn here is very simple:

P1

It denotes a single application of the EVNT rule with p ate0  and V) att 1  with Pk Pi
being the helpful process.

However, in order to justify premise C, which is niot trivial in this case, we have to prove

to :) 0 (t t VY > 0).

For this we have to considler 112's position. It' P2 is at mo or "12 then Y= I lby the invariant 11
proved above. The only other case is when I _ is at, 7n, where by a single application of' the E~NT'
rule it will eveoitual;y move to M2 produicing a positive value of y. This may be represented by a
seconidary diagramn:

P2

The diagram representation of a proof accordling to the CH AIN principle is very simil:-.. to
the proof lattices iud rodliceed ini l011 as a conicise presentation of a proof' of a liveness property.
A su perflicial diffierenice is tIhat, tley chioose to rep rcsenit as edges the consequences of tuie IN NT
ridIe, whilIe iii o11r represen tationi edges stand for the p remnises of the lXNT rilI. w hich are also the
premnisei L~o the CH A IN rule. To illustrate this (differemnce, conisidler the followintg trivial programi:

10 y m go to rn0

-Pm P2

TIhe liveness properly to be provedl is to 0 L I. Below are diagram representations of the
Cl IA IN principle and a proof lattice accord inrg to[1]

to _ P2  too

(CHAIN D~iagran Proof Lattice

* * ~As we see, the CHAI\lN diagraim contains a ;elr-edge, labled by P' (this tutne drawn explicitly)
and a helpriul edge labelled by P',. The process P,~ is gnararith'd to get us t~o fl. As a conseqluence
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of this, by the LEVNTI rule, to Of nTis conclusion is represented iii the proof lattice by a
Single edlge from to to f . Trims, the di fferent choices of' representation lead to the following minor
syntactical dJifferences between CHAIN (diagrams and~ proof' lattices:

0A*(a,) P)roof lattices are acyclic, whereas CH AIN diagrams are only weakly acyclic, i.e., may
contain self-loops.

* (b) I n (C IAIN diagrams, edges arc lab( ed by thc processcs responsible for the transition.
Special identification is provided fo. edges traversed by the helpful process. iI proof
lattices, we no longer care about the idenitities of' the processes since progress along the
lattice has already been established.

IHowever these differences are minor and a simplc procedure for translation between CHAIN
(liagramns and proof lattices exists. The important part in both is the identification of the in-
terniediat~e assertions that, are represented as nodes. In constructinig a proof', this is uisually the
creative andl miost demanding process. JBoth graph presentations provide a natuiral and intufitive S

* represent.ation of these assertions aml(I the precedence relations between them.

rhe cliai n-reasoninrg pri nci pie assu ined a finite nuimb~er of li nks in the chain. It is qutite ade-
qniate for fiite-state programs, i.e., programTs whose variables range over finite domains. IHowever,

Once we considjer programs over thme integers it is no longer su flicient, to co nsidJer only finitely many
assr i ons.In fact, sets of assertions of' qiite high cardimali ty are needed. The ob~vious geiner-

alization of' a finite set of' assertions (Vi i = 0, 7-1,r is to consider a single assertion V~)
,p paramet~rized by a parameter a taken fromn a well-founded ordered set. (A, -<). Obviously, the imost

* inriportait. p~roperty of' oil r chain of' assertion is that programn transitions eventlMly lead from Pi
*to Vj With j < i. This property can also be stated for an arbitrary well-founded ordering. Thus

aI natural generalization of' tme chain reasoning rule is the following:

The Well Founded Liveness Principle - WE~LL
Let, (A, -<) be a wl-founded set. Let V(ct) = V(a-; Y; f; y) be a par.mitie

state formla.
Let h : A I I .. kJ be a helpfulness fuinction identifying for each ak C A tine

helpfuli process Ph(,,) for states in) Vo().

A. i. /) leads fromn V(a) to ' V (]/3 V([3))

I3. F- "h(a,) leads from (p(n) to ipV (]fl3 a.

C. F p(a) D 0[0~ V (]1P -< u . p(3)) V Enablcd(h(.))1

F (D p~) (]a.

* ~A juistilicaion of this rimdI can again be comid icte(I, b~ased on imndl iction. Now, hnoweve'r, in(Iiition
over arbitrary weAl -fom idoed sets is requtired.
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15. EXAMPLE 4: BINOMIAL COEFFICIENT

As an example for the application of the WELL principle, we consider thc following programS
that computes the binomial coefficient (") for inputs 0 < k < n.

(Yl, Y2,Y3, Y4) :=(n,O0, 1, Q

67: if yl=(n-k) then go to il M in f fY 2  k then go to in1  0

t 6 :rcquest(y4 ) M2  Y 12 := 2 +

e5: t I=Y 3 *Y1 ing loop until Y + Y 2 <n

t4  Y3 := mn8  request(y4 )

e3rleaSe(y4 ) 7717 t2 := 3/Y2

t2 i 1/i Y1 M 6  Y3 =t

90 g to ~ m5 rclcase(y4l)
fj: halt M4  go to Mn3

ml1 halt

The labelling scheme of the program has been constructed in a way that simplifies the expres-
sion of the assertion p(a).

Trhe computation of this program is based onl the formnula:

(n) n.(n- 1) ... (n-k+ 1)

kk) 1.2 ... k

The values of yl, i.e., n, n - 1,.., n - k + 1, are used to comrpu te the num nerator in P, , andI thle
valures of 12, i-e., 1, 2, ... ,k, are used to comuute the dleno mi nator. Tlhe process P[~ multi plies
n -(n - 1)...- (n - k + 1) into y., While 112 (JiVides Y/3 by I1 .2... k.

The instruction

mg loop atntil Yi + Y/2 < n

guarantees even (divisibility of Y3 by Y2- It synchronizes P2 's operation with that of P,~ to ensure
that y~j is dlividled by i only after (i- i + 1) has already been multiplied i nto) it. We rely here on
thme mulathenmatical theoreml that the product of I consecuiitivye integers n (- ( ) (n + 1 ) is

4 always divisi ble by i! (the quotien i. actually being the integer (n) ).

The critical sections f~j_ andl M 5 . 7 are mutually protected by the semaphore variable Y4.
TIhis protection ensur~es that, Y~ is niot uipdated by P'2 between , say, the cornpuiitation of y~j *y and
the assignment of this valute to y~j. Wi thouL th ~mis protectio)n, the umpd ated value mnighlt, have been
overwritten lby Ill.
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We start by establishing some invariant properties of this program.

11 I- (at-.. 5 + atr..7 + y4 = t) A (y4 > 0).

This is the usual semaphore invariant. It can be proven by observing that initially this sum
equals 1, and then by considering all possible transitions. For example, the (6 - f5 transition
changes ate:j.. 5 from 0 (false) to I (true), and also decrements y4 by 1, leaving however the sulm
constant. From It we can deduce mutual exclusion of the critical sections, i.e.,

H- ('-''(.,5) v (~-m5.. 7).

As a consequence of this we can establish:

12: - (f4 D ti = Y3 -. ) A (M6 D t2  13/Y2).

This holds due to the impossibility of interference by P2 while P1 is at (4.

13: F" (n - k + att.. 6 ) < YI < n.

This invariance states that YI always lies between n-k and n. When P, is at f2..6, yI > n -k,

whereas /Pi is at other locations, yj > n - k. To verify 13 we need only consider the transitions:

* 7 -6 which maintains n - k < Yi < n, assuming it was previously known that
n -k<y I <n.

f *'2 fg8 which results inn-k<yi- 1 <n from n-k <yr <n.

14 :l- 0 5 2y <(k-am 2 ).

This invariance bounds the rninge of Y2. We need consider the transitions m 3 - m 2 and
?n2 --> r4 which can be shown to maintain 14.

15: H atm 7. 8 D (YI +Y2) < n.

I [ere we should consider two transitions:

e mg m n 8 which is possible only if' currently Yi + Y2 < n.

f2 P8 is the only transition modifying yl. Ilowever since it decrements yi it
certainly preserves Yl + Y2 < n.

Let i1s define the following virtual variables:

yJ = if atf2,, then Yl - I else yj

Y2 = if atr, then Y2- I else V12
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These variables are roughly equal to yj ard Y2 respectively and (lilfer from themi by I in certiin
ranges.

16: 1- y 3 -In.(n-l)...( + 1)]/112"y]. 

To verify tis invariant we have to check the transitions t 4 -+ 4, m 6 - in. Making use of

12, they can be shqwn to maintain 16.

17: I- Dt D y, =(n-k)] A latm, D (y =k)].

Using 16, 17 and the definition of y*, y we obtain partial corrcctness or this program, namely

F (ate, A atm,) D [y3 = (n)j-

To prove termination we will use the WELL rule in order to establish I- 0(atil A atm1 ). As
the well-founded domain we take

(A, <) = (N x N x N, <,,z).

That is, the set of triplets of nonnegative integers ordered by lexicographic ordering. This ordering
defines (MI, i 2 , 3) -< (ni, n 2 , n 3 ) iff for the lowest i, i = 1,2,3 such that mi t- ni, mi < ni.

For our goal assertion we take 4 : attt A atml. The pararneterized assertion is given by:

p(; 4,, Mj; Y, Y2) : (y, + k - Y, j, 0)=

The helpfulness function is given by:

h(a) = h(r,j,i) = (if i =I then 2 else 1).

Thus as long as the first process P, has not terminated we rely on Pi to be the helpful process.
Once it has terminated, we take P 2 to be the helpful process.

We have to show that all the three premises of the WELL rule are satisfied.

Consider first premise A. We have to show that every transition of P leads to o(fl) with f3 < a
if ?P is not already satisfied. By simple inspection of all the possible transitions we find that they all
lead from (ft, mi) to (fe, mr-,) such that either i' < i or j' < j except for the following transitions:

* t 2 -- 4. But this transition decremnents yj producing a st, ict decrease in yj +k-y 2

which is the first component in a.

S M 2 -' 771. In a similar way this transition incrernents Y2, leading to a decrease in

Yj +k -y .

* mg - mg. This transitior leaves a at the some value.

Consider now premise 11. As we have shown above, all transitions provide a strict decrease in
a. The only exception is ng -, mg. llowevr this is a I'2 -transition which is considered helpful
only when I' is at fl. BY 17, atL this point yl = (n - k) so that in view of 14, yt + Y2 < k and

hence the only transition possi)le fron 7n9 is ,n9 -- n 8 .
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To show premise C we have to prove that Ph is always eventually enabled. Consider First the
case that hL = 1. The only location in which it is not immnediately enabled is when P, is at f6

While P2 is at M5 .-7 (in view of' I,). However by simple chain reasoning it is obvious that in such
* a case, P2 will certainly reach M 4 in) which Y4~ becomes positive and P, enabled.

The case h =2 is even simpler becauise it is only considered when P, is at it. Consequently,
*even when P2 is at in8 , which may potentially raise some problems, we have in view or 11 and at f

that y~t > 0 and Pz is enabled.

r hus we conclude that V' : attl Aatm1 must eventually be realized and thererore the program
must Lerminate.

16. PRECEDENCE PROPERTIES

The trext class of properties we will consider and providle proof pinhciples for is that of p~rece-
dlenre properties. These are properties, usually needing the U operator for their expressioni, which

* ensure that some event precedes another event, or that a certain event will riot happen unitil an-
other event happens fi rst. In view of the fact that thle basic FPAIR and IN NT rules did act ually

* l~provide a conclusion containing thle U operator, they may be niaturrally utilized to foriri precedenice
proof' principles which are generalizations of the corresponding liveness principles.

In the Ifollowlilg we will Often Consider nested u~ntil exprvssions in which the nesting ;11ways
occurls in the secondl argument. We therefore adlopt thle convention of representing the fiestedl
I or inu Ia:

by: ~ nU'ir 1 U ... PI UO

Thel( semiantiic rnvani ng of this formula is that, star ti ng fro in thle presenit there is going to be
a pvriool in which (p,, continruouisly holds, l'ollowed by another periodl Ni which (p, I contimiiously
hiolds, ,. . , followed by a periodl in which (p continuously holds, uintil fiinally P() occurs. Any of'
these p~eriods may be empty, but the occurrence of' po is guaranteed.

Let us considler first thle proper generalization of thle CI IA IN rule in which we assumne a finite
* chain of' assertions V., (pr 1, V , leadinig to the goal 0) = 'pa.

le(t 0 < Pi < P2 < .. < p., = r be aI partition of thle i ndex range intto ,jcontiguous
segrnen is. Then we miay formulate the l llowi rig (l11:6i n p ri ici ple for precedetire properties:
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The Chain Rule for Precedence Properties P-1-CIIAfN

Let 'Po V ... I p, be a sequence of state assertions, and
0  PO< PI < P2 <... < p. ra partition of

A. I- P leads froin pi to (V PA for i 1, . r.

B. For every i > 0 there exists a k = ki such that:

F- Pk leads from Vj to (V PA)
j<i

C. For i>O0and k = kas above:

I- D < c(V~oj) V Enabled(Pk)]
3<,

i=0

where

')t is V j fort= 1,.,.
pt~-- <j<Pt

The conclusion states that startinrg at a state that satisfies one of' the 'Pit i =0, ... ,r, W(!
P.

are guarantee(] to have a period in which ( V ) continuously holds, followed by a period in
i=p.--I+1

P. -

which ( V Vj) continuously holds, etc., until 'Po is finally realized. Any of these periods m~ay
j~pa- 2+1

be empty.

Proof-

To justify the soundness of this conclusion we will first prove it for the most refined partition
possible, namnely:

i =0

This is proved in a way sirni!'ir to the justification of' the corresponding liveniess p~rinlciple. We
show, by induction on fl, n = 0, 1, . that

- (V V) D (V.U V IU ... iU O).

For n =0 we have FI- 'p o which is the induction statement for n =0.
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Assume that the statement above has [cen proved for a certain n and consider its proor for

n + 1

Consider the EVNT rule with vp = vn+,, V) ( VP i). As shoN~n in the proof of the liveness

case, all the premises of the EVN1 rule are satisfied. Consequently we may conclude:

l

i=O

By the induction hypothesis and the UU rule this yields

l- 'p ' V+U (P. U ... t oU WO).

u)ue to F- v D (uUv) which is a consequence of axiom A9, the induction hypothesis can also be

written as

71

(Vi,) V 'p,+, U (Vn u ... VI U o1.

'Taking the disjunction of the last two gives

V (VP) D pn+ I U ('P- U ... PI Uo),
~i=O

which is the required statement for n + 1.

Consider now a coarser partition:

0 = PO < PI < P2 < < ps .

fly consecutively rinrging any two contiguous assertions that. Fall into the same partition cell, using
t lhcorcn "r38:

F-('p: U (Pi U V)) D ((V,+1 V Vi) u V),

we obtain the coarser conclusion:

71+1

F ((V ) ( V jpj)u ... ( V vj)u o)).
i=O P. <j, P,P 2<j'P. t ()<j<P1

Examples:

As our first. example, let us consider the Mutual I'Exclusion program analyzed above. We have
already proven that, mutual exclusion is maintained by this program. We have also proven the
liveness properly that, il' P, wishe: Ito enter its critical sccLion it, will eventually gain access to it.
A more discriminali rig question is that of how fair is our algorith1rM. That is, if I, wishes to e!iter
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its critical section, how rmany times will P2 be ab~le to en -ter its own critical section beforc J)l? Is
that number bounded? We refer to this question as the problem of' bouinded overtaking. Namely,
how many timnes can P2 overtake P1 before P, enters his critical section.

Our first analysis Makes use of Fig. I without any modifications. We only read froin it the
stronger conclusion according to the stronger 1P-GIIAlN rile. As a partition we choose p, 7,
P2 =9, P3 = r = It. Consequently, from the diagram of' Fig. I we Conclude by the li-Cl lAIN
rule:

i 1i=10 i=8 l

Rleplacinig each of the right hand side (lisjllnctions by a weaker prope(rty and the left hand sd
disjunction by a stronger statement we obtain:

i- t3,4~ M5(,rn6) U rn5,6 U (-M5, 6 ) U 15).

This implies that if P, is at the waiting loop) inl f3,4, there will be a period inl which P2 is
riot in the critical section rn5 ,r6 , followed by a periodI in which P2 is insidle the critical section rn5,6)
followed by a period in which P2 is ouitside the critical section whiich terminates bly PIj entering
his critical section. Sice any of these periods may be emIpty this is a worst-case analysis. B~ut it
certainly assures 1-bounded overtaking, i.e., once P, is in f3,4, P2 may overtake it, t rmost once.

* - Having successfully analyzed the situation fromn 6,4 on we may attempt to obtain a similar
analysis from the moonient, that 1P1 enters t 2. Lol

This analysis callIs for a refinemnent, of the diagram of iPig. I. riwh follOwinrg is a su hdiagrnimu
that shonuld replace the node co rreSpOlilding to P12 inm Fig. 1 . it, conisists of th~ree nodvs labellted

repetively Vp7.5, V9-.5i nd 1..Tefactional inmdexi ng indicates that (p7.5 Should1( be inrserted
bct,wen V7~ arid V8~ in Fig. 1 . Th le edges Oult Of (pi: shl d enter One of Lthe(se th~ree nodes. Edges--
out of V7.5 leald tO sonTic of' Pi, . ,(p

(p7-5: Lt2 (rt 13,4 A t 2) V l..7Vrn

P2

r) f 2 ,o 3 4 , I - (Ir

Si milarly for edges out, of (.5and Vp1j.5. Considerinrg time uipd ato~ Idiagram en ni loseil of Fig.
I an(I the above su bdiagrarn we obtaini the following concri usion:

''2.A D (V vi) U (V v) U (V vi) U (pm)).
0~l 8 i-I

00



This again leads to

F e2..4  D (~rns,) U m5,6 U (-m5, 6 ) U e5),

which ensures l.-bounded overtaking even from t2. Encouraged by this, we may next. ask whether
a similar result can he obtained from ti. Unrortunately this is not the case. P2 may enter its
critical section an arbitrary numnber of times while P1 is at e1. This is obvious since while being
at f-t, Pt has not yet modified any variable in a way that will show that it is not still in to. And
naturally while PI is at to, P2 may enter the critical section any number of times if the algorithm
is correct.

TlE WELL-FOUNDED PRINCIPLE FOR PRECEDENCE PROPERTIES

A natural extension of the P-CIlAIN rule to programs that require infinite chains of assertions
again uses well founded ordered sets.

Let (A, <) be a well founded ordered set. We require however that the ordering is total (or
linear). That is, for every two (istinct elements 01 ,a 2 E A either at -< a 2 or a2 a t.

Well Founded Precedence Rule -- P-WlLL

Let p(a) = v(a; W; 9) be a parametrized state assertion
with a C A.

Let h : A - [I . . k] be a helpfulness function.
Let at -< k2 -< .. . "< , be a sequence or elements of A.

i- P leads from V(a) to ¢ v (10 _< a .

I- Ph(.) leads fromt p(a) to 4 V (]3f -< a . V(0))

p- (a) D 01[0 V (]/ [ I . '(fl)) V 1,nabled(Ph(.))l

F- (3ak a.p(a)) (UU¢, ,U...4, 1 U4)

where

.0t is /3(am -I / _at).() fort= 2, ... s, and

0. i is 10(p/: a ). V(13)

Note that while the range of the pararLeter in the assertions is infini:te, the partil.ion is still
finite.
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